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To study elastic scattering and breakup cross sections  of 11Li in a four-body eikonal 

model. 



To study elastic scattering and breakup cross sections  of 11Li in a four-body eikonal 

model. 
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  High-energy reactions are widely used to investigate Halo nuclei. 

 

  High incident energies permits to handle the Schrödinger equation in a 

simplified way: Eikonal approximation. 

 

  Non-microscopic 2-Body and 3-Body descriptions of the projectile has been 

introduced in the eikonal method. 

Two-body projectile Three-body projectile 

Elastic scattering, breakup 

Ex: 11Be+208Pb =(10Be+n)+208Pb 

G. Goldstein, et. al; Phys. Rev. C 73, 

024602 (2006). 

Elastic scattering, breakup 

Ex: 6He+208Pb =(𝛼+n+n)+208Pb 

D. Baye, et. al; Phys. Rev. C 79, 

024607 (2009). 
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We have to solve the Schrödinger equation 

 

−
ℏ2

2𝜇𝑃𝑇
∆ + 𝑉𝑃𝑇 𝑟 Φ 𝒓 = 𝐸Φ 𝒓 . 

 

At high-energies the wave function: Smooth deviation 

from a plane wave 

 

Φ 𝒓 =
1

2𝜋 3/2
𝑒𝑖𝐾𝑍 Φ 𝒓 , 

 

we have  

   

−
ℏ2

2𝜇𝑃𝑇
∆ + 2𝑖𝐾

𝜕

𝜕𝑍
+ 𝑉𝑃𝑇 𝑟 Φ 𝒓 = 0. 

 

At high-energies ∆Φ ≪ 𝐾
𝜕Φ 

𝜕𝑍
, then 

 

 Φeik =
1

2𝜋 3/2 exp [𝑖𝐾𝑍 −
𝑖

ℏ𝑣
 𝑉𝑃𝑇(𝒃, 𝑍′)𝑑𝑍′]. 

𝑍

−∞
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Ex: Elastic scattering of an incident uncharged particle 

𝑓 𝜃 = 𝑖𝐾  𝐽0 𝑞𝑏 1 − 𝑒𝑖𝜒(𝑏) 𝑏𝑑𝑏;    𝑞 = 2𝐾 sin
𝜃

2

∞
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The elastic amplitude 

The eikonal phase 

𝜒 𝑏 = −
1

 ℏ 𝑣
 𝑉𝑃𝑇 𝑏, 𝑍 𝑑𝑍;   𝑣 =

ℏ𝐾

𝜇𝑃𝑇

∞

−∞

 

Extension to charge particles 

𝜒 𝑏 = 𝜒𝑁 𝑏 + 𝜒𝐶(𝑏) 

Nuclear  Coulomb Corrected to overcome  

divergences due to the 

Coulomb potential. 



Fig 1. The energies are shown in MeV. The n+208Pb potential is taken from  A. J. 

Kooning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003). 

 The agreement improves when the energy increases and 𝜃 decreases. 
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Nuclear optical potentials+Coulomb 

Factorizing: 

The eikonal approx. 

(High-energies) 

G. S. energy of the projectile 

Initial relative P.T. energy  
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Eikonal w. f. Φ eik 𝑹, 𝒙, 𝒚 ≈ Ψ0 𝒙, 𝒚 exp  −
𝑖

ℏ𝑣
 𝑉𝑃𝑇 𝒃, 𝒁′, 𝒙, 𝒚 𝑑𝑍′

𝑍

−∞

 

𝑆 𝒃 = Ψ𝐽0𝑀0
′𝜋0 𝑒𝑖𝜒(𝒃) Ψ𝐽0𝑀0𝜋0  

3B bound state 3B bound state 

𝜒 𝒃 = −
𝒊

ℏ𝒗
 𝑉𝐶𝑇 𝒃 + 𝑉𝑛𝑇 𝒃 + 𝑉𝑛𝑇(𝒃)

∞

−∞
dZ 

𝑆 𝒃 ∝ Ψ𝑘𝑥𝐾𝑦
(𝐸) 𝑒𝑖𝜒(𝒃) Ψ𝐽0𝑀0𝜋0  

3B bound state 3B scattering 

State R-matrix 

Eikonal elastic amplitude 

Eikonal breakup amplitude 

Eikonal phase 

(Dynamics information) 

Bup obs. 

Elastic 

Cross 

sections 

1-,0+,2+ 



Neutron 1 

Neutron 2 
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Core 

P 

Core 

𝒙 
𝒚 

𝐻3𝐵Ψ𝐽𝜋 = 𝐸Ψ𝐽𝜋 

𝐸 < 0 → Bound state 

𝐸0 = −𝑆2n 

0 MeV, core + n + n 

0 MeV, core + n + n 

𝐸 > 0 → Scattering states 
𝑥 , 𝑦 :  Jacobi coordinates 

 

ρ,α:  Hyperspherical coordinates 

 

ρ2 = 𝑥2 + 𝑦2:  Hyperradius 

 

𝛼 = arctan
𝑦

𝑥
:  Hyperangle 

 

Ω5 = (𝛼, Ω𝑥, Ω𝑦 ) 

𝐸 



2B potentials, Vcn Gaussian, W. Saxon 

Kmax 

Hyperradial Function 

(Unknown) 

Eigenfunction of angular  

momentum K  (Known) 

 

𝐻3𝐵Ψ𝐽𝜋 = 𝐸Ψ𝐽𝜋 

𝐻3𝐵 = −
ℏ2

2𝑚𝑛
𝛻𝑥

2 −
ℏ2

2𝑚𝑛
𝛻𝑦

2 + 𝑇𝑐.𝑚. +  𝑉𝑖𝑗

𝑖<𝑗

 

Ψ𝐽𝜋 = 𝜌−5/2   𝜒𝛾𝐾
𝐽𝜋(𝜌)𝒴𝛾𝐾

𝐽𝑀(Ω5)

𝛾

∞

𝐾=0

 

𝜋 = −1 𝐾 → Parity of the relative motion of the 3B 

𝛾 = (𝑙𝑥, 𝑙𝑦 , 𝐿, 𝑆) 

𝒙 
𝒚 

𝑛2 

𝑛1  

𝐿 = 𝑙 𝑥 + 𝑙 𝑦 

𝑆 = 𝑆 1 + 𝑆 2 

𝐽 = 𝐿 + 𝑆  

Spinless core 



Lagrange basis Eigenvalue problem 

It facilitates the calculations 

𝐻3𝐵Ψ𝐽𝜋 = 𝐸Ψ𝐽𝜋 

Ψ𝐽𝜋 = 𝜌−5/2   𝜒𝛾𝐾
𝐽𝜋(𝜌)𝒴𝛾𝐾

𝐽𝑀(Ω5)

𝛾

∞

𝐾=0

 

𝜒𝛾𝐾
𝐽𝜋 𝜌 =  𝐶𝛾𝐾𝑖

𝐽𝜋

𝑁

𝑖=1

𝑢𝑖 𝜌 , 



Internal region External region 

Nuclear + Coulomb + Centrifugal 

potentials 

Coulomb + Centrifugal potentials 

Large matrix for typical g K values  

𝜒𝛾𝐾
𝐽𝜋 𝜌 =  𝐶𝛾𝐾𝑖

𝐽𝜋

𝑁

𝑖=1

𝑢𝑖 𝜌  𝜒𝛾𝐾
𝐽𝜋 𝜌 → ∞  

𝜒𝛾𝐾
𝐽𝜋 𝜌 → ∞ = 𝐴𝛾𝐾

𝐽𝜋 𝐻𝛾𝐾
− 𝑘𝜌 𝛿𝛾𝛾´𝛿𝐾𝐾´ − 𝑈𝛾𝐾,𝛾´𝐾´

𝐽𝜋 𝐻𝛾𝐾
+ 𝑘𝜌  

Hankel functions 

𝑈𝛾𝐾,𝛾´𝐾´
𝐽𝜋 → Collision matrix → 𝑒2𝑖𝛿 → Eigenphases 



 J=0+ J=1- J=2+ 

Kmax gK Kmax gK Kmax gK 

12 28 9 40 12 99 

16 45 13 77 16 172 

20 66 17 126 20 265 

𝑁 → Number of Lagrange basis,  typical 𝑁 = 40 

𝛾𝐾 → Channels number 

Matrices of → 𝛾𝐾𝑁 × 𝛾𝐾𝑁 

Example: 𝐽 = 2+ and 𝐾max = 20 

Matrices of → 𝛾𝐾𝑁 × 𝛾𝐾𝑁 = 265 ⋅ 40 × 265 ⋅ 40 = 10600 × 10600 

𝛾 = (𝑙𝑥, 𝑙𝑦 , 𝐿, 𝑆) 



 

  𝑅𝐽𝜋        𝑈𝐽𝜋        (𝑆−1𝑈𝑆 = 𝑒2𝑖𝛿) 

 

  Information about three-body resonances is contained in the eigenphases δ. 
 

 

 

 

 

 

 

 

 

 

   

 

 

 
Fig. 2. Eigenphases for 6He for different J values (From P. Descouvemont et al, Nucl. 

Phys. A 765 (2006) 370). 



1- 3B cont. R-matrix 0+ 3B bound state 

𝑑𝐵𝐸1

𝑑𝐸
𝐸 ∝ Ψ𝑘𝑥𝑘𝑦

𝐸 ℳ𝐸1 Ψ𝐽0𝑀0𝜋0

2

 

Fig. 3. Electric dipole distribution for different Kmax values. From D. 

Baye et al, Phys. ReV. C 79, 024607 (2009). 



9Li+n interaction 

 

 From H. Esbensen, et. al, Phys. ReV. C 56, 3054 (97). 

 Non-existent elastic scattering experimental  data. 

 Fitted to reproduce a presumed p1/2 resonance at 540 keV and a s virtual 

state. 


9Li-n interaction multiplied by 1.0056 to reproduce G.S. energy of 11Li =  

- 0.378 MeV. 

 

n+n potential 

 

  Minnesota interaction 

 

 

To calculate bound and scattering states of 9Li+n+n 

We those potentials we well reproduce r.m.s. radius of 11Li : 3.1 fm (exp. r.m.s 

of 3.16 ±0.11 fm). 



 Like-resonant behavior for 1- and 2+ continuum 

 Rise of the 0+ phase shift with energy: “Like a superposition of resonances” 



Fig 5. The s value is in MeV. Experimental Data from T. Nakamura et. al, Phys. Rev. Lett. 

252502 (2006).  

R-matrix (Red curve) 

 We overestimate the E1 distribution in the peak region. 

1- 0+ 

𝑑𝐵𝐸1

𝑑𝐸
𝐸 ∝ Ψ𝑘𝑥𝑘𝑦

𝐸 ℳ𝐸1 Ψ𝐽0𝑀0𝜋0

2

 



 Some applications by D. Baye, P. Capel, P. Descouvemont and Y. 
Suzuki, Phys. ReV. C 71, 024607 (2009). They described the elastic 
breakup cross section of 6He on 208Pb @ 70 A MeV. 

 

 Qualities of the model: 

 

 Contributions different from the dipole. 

 

  It does not require 6He-208Pb potential: a-208Pb potential and n-208Pb 
potential are well known. 

 

  It takes nuclear and Coulomb effects and their interference on the same 
footing. 

 

  There is not adjustable parameter. 

 

 

 

 




 9Li-208Pb potential (lack of the potential):  

Renormalized (91/3+2081/3) a-208Pb interaction @ 70 A MeV of B. Bonin et. al. 

(Following the same idea of P. Capel et. al, Phys. Rev. 68, 014612 (2003) for 10Be 

on 208Pb). 

 

  Variation of the 9Li-208Pb potential was checked but it did not provide a 

significant change to the breakup and angular distributions. 

 

 n-208Pb potential:  

Kooning and Delaroche, Nucl. Phys. A 713, 231 (2003). 

  

To calculate the breakup cross sections of 11Li on 208Pb @ 70 A MeV:  



 Small correction of the 0+ and 2+ partial waves to the total cross section. 

Fig. 6. Partial and total eikonal breakup cross sections. 



11Li on 208Pb @ 70 A MeV 

 Theoretical data convoluted with a Gaussian of 𝜍 = 0.17 𝐸 MeV           

Fig. 7. Exp. Data from T. Nakamura et. al, phys. Rev. Lett. 252502 (2006). 



Fig. 8.  Partial, total and convoluted total angular distributions. Experimental Data  

from T. Nakamura et. al, Phys. Rev. Lett. 252502 (2006).  

  Very good agreement of the total convoluted curve for almost all angles. 

  Appreciable 0+ and 2+ contributions after 𝜃 ≿ 1 deg. 



Fig. 9. The s value is in MeV. Experimental Data from T. Nakamura et. al, Phys. Rev. Lett. 

252502 (2006).  

R-matrix (Red curve) 

 Why we overestimate the E1 distribution? 



 

In the breakup reactions of 11Li+208Pb @ 70 A MeV 

  
𝑑𝜎

𝑑𝐸
  is  measured directly 

 

 

  
𝑑𝜎

𝑑𝜃
  is measured directly 

 

 

    
𝑑𝐵(𝐸1)

𝑑𝐸
  is measured indirectly 

 (It depends on model assumptions) 

We fit the data 

We fit the data 

We do not  fit the data 



It is extracted from the equivalent photon method 

as 

 

𝑑𝜍Exp

𝑑𝐸
=

16𝜋3

9ℏ𝑐

𝑑𝐵Exp 𝐸1

𝑑𝐸
 2𝜋𝑑𝑏𝑏

∞

𝑏𝑚𝑖𝑛

𝑁𝐸1 𝑏, 𝐸  

  

 

  From 𝑏𝑚𝑖𝑛 to exclude nuclear excitation. 

 

  𝑁𝐸1 𝑏, 𝐸 → Number of virtual photons incident  

on 11Li by unit area. 

 

 It is assumed to be one step and dominated by 

a single E1 multipolar transition. 

 

  It comes from semi-classical perturbation 

theory. 

208Pb 

11Li 
Virtual g 

11Li is excited by absorption 

of a virtual photon from the 

Coulomb field of the target. 



𝑑𝐵Exp 𝐸1

𝑑𝐸
=

9

32𝜋

ℏ𝑣

𝑍𝑇𝑒

2
1

𝜉𝑚𝑖𝑛𝐾0 𝜉𝑚𝑖𝑛 𝐾1 𝜉𝑚𝑖𝑛

𝑑𝜍Exp

𝑑Ω
 

In non-relativistic regime  

𝐸0 → G. S. energy of 11Li  

𝜉𝑚𝑖𝑛 =
𝐸 − 𝐸0

ℏ𝑣
𝑏𝑚𝑖𝑛, 𝑣 → Projectile-target relative velocitiy, 

𝑏𝑚𝑖𝑛 =
𝑍𝑃𝑍𝑇𝑒2

2 tan
𝜃𝑐
2

→ 

𝐸 → Excitation energy of 11Li, 

Min. Impact parameter for the semi-calssical  

Coulomb trajectory 

𝜃𝑐 → maximum scattering angle (beyond 𝜃𝑐 nuclear interaction is important.) 



Fig. 10. The 𝜃𝑐   values of 0.9, 1.46 and 2 deg correspond to 𝑏𝑚𝑖𝑛 of 31, 19 and  

14 fm respectively.   

  Small 𝜃𝑐 provides a larger dipole distribution at low excitation energies. 



  Reduction in the 11Li+208Pb elastic scattering due to flux going to breakup. 

  0 ≲ 𝜃 ≲ 1 → Rutherford scattering. 

One-body projectile (red curve) Three-body projectile (yellow curve) 



 We have predicted a 1-  resonant eigenphase for 11Li. 

 

 

 The maximal contribution for the total breakup cross section is coming from the 

1- partial wave. 

 

 

 The breakup cross sections and angular distributions of 11Li on 208Pb are in good 

agreement with the experimental data. 

 

 

  To test our model we suggest to experimentalist to measure elastic scattering of 
11Li at high-energies.  

 

 

  We need to clarify why we overestimate the dipole strength distribution of 11Li 

with the same 11Li wave functions that we had successful results for the breakup 

and angular distributions. Ideas are welcome! 
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