Eikonal method for halo nuclei

E. C. Pinilla, P. Descouvement and D. Baye

Université Libre de Bruxelles, Brussels, Belgium

YIPQS Long-term workshop Dynamics and Correlations in Exotic Nuclei (DCEN2011)

20th September - 28th October, 2011 Yukawa Institute for Theoretical Physics, Kyoto, Japan

Outline

- 1. Motivation
- 2. Introduction
- 3. Four-body eikonal method
- ➤ Elastic scattering ⁹Li+n+n on ²⁰⁸Pb @ 70 A MeV
- ➢ Breakup of ⁹Li+n+n on ²⁰⁸Pb @ 70 A MeV
- 4. Three-body projectile
 - Bound states
 - Scattering states
- 5. Applications
 - > ⁶He
 - ➤ Nucleus of our interest ¹¹Li
- 6. Conclusions

Motivation

To study elastic scattering and breakup cross sections of ¹¹Li in a four-body eikonal model.

- Bound states
- Continuum states
- Dipole strengths
- Four-body elastic scattering cross sections

Motivation

To study elastic scattering and breakup cross sections of ¹¹Li in a four-body eikonal model.

- Bound states
- Continuum states
- Dipole strengths
- > Breakup cross sections
- Angular distributions

Introduction

- High-energy reactions are widely used to investigate Halo nuclei.
- High incident energies permits to handle the Schrödinger equation in a simplified way: Eikonal approximation.
- Non-microscopic 2-Body and 3-Body descriptions of the projectile has been introduced in the eikonal method.

Elastic scattering, breakup Ex: ¹¹Be+²⁰⁸Pb =(¹⁰Be+n)+²⁰⁸Pb G. Goldstein, et. al; Phys. Rev. C 73, 024602 (2006).

Elastic scattering, breakup Ex: ${}^{6}\text{He}+{}^{208}\text{Pb} = (\alpha+n+n)+{}^{208}\text{Pb}$ D. Baye, et. al; Phys. Rev. C 79, 024607 (2009).

Eikonal approximation for one-body projectile

We have to solve the Schrödinger equation

$$\left[-\frac{\hbar^2}{2\mu_{PT}}\Delta + V_{PT}(r)\right]\Phi(\boldsymbol{r}) = E\Phi(\boldsymbol{r}).$$

At high-energies the wave function: Smooth deviation from a plane wave

$$\Phi(\mathbf{r}) = \frac{1}{(2\pi)^{3/2}} e^{iKZ} \widehat{\Phi}(\mathbf{r}),$$

we have

Smooth varying function

$$-\frac{\hbar^2}{2\mu_{PT}}\left[\Delta + 2iK\frac{\partial}{\partial Z} + V_{PT}(r)\right]\widehat{\Phi}(\boldsymbol{r}) = 0.$$

At high-energies $\left|\Delta\widehat{\Phi}\right| \ll K \left|\frac{\partial\widehat{\Phi}}{\partial Z}\right|$, then

$$\Phi^{\text{eik}} = \frac{1}{(2\pi)^{3/2}} \exp[iKZ - \frac{i}{\hbar v} \int_{-\infty}^{Z} V_{PT}(\boldsymbol{b}, Z') dZ'].$$

Structureless projectile

P

Z

Structureless

Target

Eikonal approximation for one body projectile

Ex: Elastic scattering of an incident uncharged particle

The elastic amplitude

$$f(\theta) = iK \int_{0}^{\infty} J_0(qb) \left[1 - e^{i\chi(b)}\right] bdb; \quad q = 2K \sin\frac{\theta}{2}$$

The eikonal phase

$$\chi(b) = -\frac{1}{\hbar v} \int_{-\infty}^{\infty} V_{PT}(b, Z) dZ; \quad v = \frac{\hbar K}{\mu_{PT}}$$

Extension to charge particles

$$\chi(b) = \underbrace{\chi_N(b)}_{\text{Nuclear}} + \underbrace{\chi_C(b)}_{\text{Coulomb}}$$

Corrected to overcome divergences due to the Coulomb potential.

Elastic cross sections for n+208Pb at different incident energies

Fig 1. The energies are shown in MeV. The n+²⁰⁸Pb potential is taken from *A. J. Kooning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).*

 \diamond The agreement improves when the energy increases and θ decreases.

Four-body eikonal

$$H_{4B}\Phi=E_T\Phi, \qquad E_T=E_0+rac{\hbar^2K^2}{2\mu_{PT}}$$
 $E_0 o$ G. S. energy of the projectile $rac{\hbar^2K^2}{2\mu_{PT}} o$ Initial relative P.T. energy $H_{4B}=-rac{\hbar^2}{2\mu_{PT}}
abla^2_R+V_{PT}+H_{3B},$

Nuclear optical potentials+Coulomb

$$V_{PT} = V_{CT} + V_{Tn} + V_{Tn}$$

Factorizing: $\Phi(\vec{R}, \vec{x}, \vec{y}) = e^{iKZ} \hat{\phi}(\vec{R}, \vec{x}, \vec{y})$

$$\phi
ightarrow \left(-rac{\hbar^2}{2\mu_{PT}}
abla_R^2 - i\hbar \partial_Z + V_{PT}
ight) \hat{\phi} = 0$$

The eikonal approx. $|\nabla^2 \hat{\phi}| << K |\partial_Z \hat{\phi}|$ (High-energies)

Four-body eikonal

Eikonal w. f.
$$\longrightarrow$$
 $\widehat{\Phi}^{eik}(\mathbf{R}, \mathbf{x}, \mathbf{y}) \approx \Psi_0(\mathbf{x}, \mathbf{y}) \exp\left[-\frac{i}{\hbar v} \int_{-\infty}^{z} V_{PT}(\mathbf{b}, \mathbf{Z}', \mathbf{x}, \mathbf{y}) dZ'\right]$

Eikonal elastic amplitude
$$\longrightarrow$$
 $S(b) = \left\langle \Psi^{J_0 M_0' \pi_0} \middle| e^{i\chi(b)} \middle| \Psi^{J_0 M_0 \pi_0} \right\rangle$ \longrightarrow Elastic Cross sections

Eikonal breakup amplitude
$$\longrightarrow S(\mathbf{b}) \propto \left\langle \Psi_{k_x K_y}(E) \middle| e^{i\chi(\mathbf{b})} \middle| \Psi^{J_0 M_0 \pi_0} \right\rangle \longrightarrow \text{Bup obs.}$$

3B scattering 3B bound state State R-matrix

Three-body model of the projectile

 \vec{x} , \vec{y} : Jacobi coordinates

 ρ , α : Hyperspherical coordinates

$$\rho^2 = x^2 + y^2$$
: Hyperradius

$$\alpha = \arctan\left(\frac{y}{x}\right)$$
: Hyperangle

$$\Omega_5 = (\alpha, \Omega_{\chi}, \Omega_{y})$$

$$H_{3B}\Psi^{J\pi} = E\Psi^{J\pi}$$

 $E < 0 \rightarrow \text{Bound state}$

 $E > 0 \rightarrow Scattering states$

n

Three-body model of the projectile

$$H_{3B}\Psi^{J\pi} = E\Psi^{J\pi}$$

$$H_{3B} = -\frac{\hbar^2}{2m_n} \nabla_x^2 - \frac{\hbar^2}{2m_n} \nabla_y^2 + T_{c.m.} + \sum_{i < j} V_{ij}$$

2B potentials, Vcn Gaussian, W. Saxon

Hyperradial Function (Unknown)

Eigenfunction of angular momentum *K* (Known)

 $\pi = (-1)^K \to \text{Parity of the relative motion of the 3B}$

Spinless core

$$\gamma = (l_x, l_y, L, S)$$

$$\hat{L} = \hat{l}_x + \hat{l}_y$$

$$\hat{S} = \hat{S}_1 + \hat{S}_2$$

$$\hat{J} = \hat{L} + \hat{S}$$

Three-body bound states

$$H_{3B}\Psi^{J\pi} = E\Psi^{J\pi}$$

$$\Psi^{J\pi} = \rho^{-5/2} \sum_{K=0}^{\infty} \sum_{\gamma} \chi_{\gamma K}^{J\pi}(\rho) \mathcal{Y}_{\gamma K}^{JM}(\Omega_5)$$

$$\chi_{\gamma K}^{J\pi}(\rho) = \sum_{i=1}^{N} C_{\gamma Ki}^{J\pi} u_i(\rho),$$

Eigenvalue problem

Lagrange basis

It facilitates the calculations

Three-body continuum states: R-matrix

Internal region

$$\chi_{\gamma K}^{J\pi}(\rho) = \sum_{i=1}^{N} C_{\gamma Ki}^{J\pi} u_i(\rho)$$

External region

$$\chi^{J\pi}_{\gamma K}(\rho\to\infty)$$

Nuclear + Coulomb + Centrifugal potentials

Coulomb + Centrifugal potentials

$$\chi_{\gamma K}^{J\pi}(\rho \to \infty) = A_{\gamma K}^{J\pi} \Big[H_{\gamma K}^{-}(k\rho) \delta_{\gamma \gamma'} \delta_{KK'} - U_{\gamma K, \gamma' K'}^{J\pi} H_{\gamma K}^{+}(k\rho) \Big]$$

Hankel functions

 $U^{J\pi}_{\gamma K,\gamma'K'} \to C$ ollision matrix $\to e^{2i\delta} \to E$ igenphases

Large matrix for typical γ K values

Dimension of the R-matrix calculations

J=0+		J=1-		J=2+	
<i>K</i> max	γ Κ	<i>K</i> max	γ K	<i>K</i> max	γ Κ
12	28	9	40	12	99
16	45	13	77	16	172
20	66	17	126	20	(265)

$$\gamma = (l_x, l_y, L, S)$$

N o Number of Lagrange basis, typical N = 40 $\gamma K o$ Channels number Matrices of $\rightarrow \gamma KN imes \gamma KN$

Example: $J = 2^+$ and $K \max = 20$ Matrices of $\rightarrow \gamma K N \times \gamma K N = 265 \cdot 40 \times 265 \cdot 40 = 10600 \times 10600$

Applications for ⁶He: Three-body resonances

$$R^{J\pi} \longrightarrow U^{J\pi} \longrightarrow (S^{-1}US = e^{2i\delta})$$

 \diamond Information about three-body resonances is contained in the eigenphases δ .

Fig. 2. Eigenphases for ⁶He for different J values **(**From *P. Descouvemont et al, Nucl. Phys. A 765 (2006) 370*).

Applications for ⁶He: E1 strength distribution

$$\frac{dB_{E1}}{dE}(E) \propto \left| \left\langle \Psi_{k_x k_y}(E) \middle| \mathcal{M}^{E1} \middle| \Psi^{J_0 M_0 \pi_0} \right\rangle \right|^2$$
1- 3B cont. R-matrix 0+ 3B bound state

Fig. 3. Electric dipole distribution for different Kmax values. From *D. Baye et al, Phys. ReV. C* 79, 024607 (2009).

Applications in ¹¹Li: Conditions of the calculations

To calculate bound and scattering states of 9Li+n+n

⁹Li+n interaction

- ❖ From H. Esbensen, et. al, Phys. ReV. C 56, 3054 (97).
- Non-existent elastic scattering experimental data.
- ❖ Fitted to reproduce a presumed p_{1/2} resonance at 540 keV and a s virtual state.
- ❖ ⁹Li-n interaction multiplied by 1.0056 to reproduce G.S. energy of ¹¹Li =
 0.378 MeV.

n+n potential

Minnesota interaction

We those potentials we well reproduce **r.m.s. radius of ¹¹Li : 3.1 fm** (exp. r.m.s of 3.16 ±0.11 fm).

Eigenphases of ¹¹Li in a three-body model

- ❖ Like-resonant behavior for 1⁻ and 2⁺ continuum
- ❖ Rise of the 0+ phase shift with energy: "Like a superposition of resonances"

Convoluted E1 strength distribution of ¹¹Li with the detector response

Fig 5. The σ value is in MeV. Experimental Data from *T. Nakamura et. al, Phys. Rev. Lett.* 252502 (2006).

❖ We overestimate the E1 distribution in the peak region.

Four-body breakup eikonal

Some applications by D. Baye, P. Capel, P. Descouvement and Y. Suzuki, Phys. ReV. C 71, 024607 (2009). They described the elastic breakup cross section of ⁶He on ²⁰⁸Pb @ 70 A MeV.

• Qualities of the model:

- Contributions different from the dipole.
- ✓ It does not require 6 He- 208 Pb potential: α - 208 Pb potential and n- 208 Pb potential are well known.
- It takes nuclear and Coulomb effects and their interference on the same footing.
- ✓ There is not adjustable parameter.

Conditions of the calculations for 11Li on 208Pb

To calculate the breakup cross sections of ¹¹Li on ²⁰⁸Pb @ 70 A MeV:

❖ ⁹Li-²⁰⁸Pb potential (lack of the potential):

Renormalized (9^{1/3}+208^{1/3}) α -²⁰⁸Pb interaction @ 70 A MeV of B. Bonin et. al. (Following the same idea of *P. Capel et. al, Phys. Rev. 68, 014612 (2003)* for ¹⁰Be on ²⁰⁸Pb).

❖ Variation of the ⁹Li-²⁰⁸Pb potential was checked but it did not provide a significant change to the breakup and angular distributions.

❖ n-²⁰⁸Pb potential:

Kooning and Delaroche, Nucl. Phys. A 713, 231 (2003).

Breakup cross sections of 11Li on 208Pb @ 70 A MeV

Fig. 6. Partial and total eikonal breakup cross sections.

❖ Small correction of the 0+ and 2+ partial waves to the total cross section.

Convoluted breakup eikonal cross section with the detector response

¹¹Li on ²⁰⁸Pb @ 70 A MeV

Theoretical data convoluted with a Gaussian of $\sigma = 0.17\sqrt{E}$ MeV

Fig. 7. Exp. Data from T. Nakamura et. al, phys. Rev. Lett. 252502 (2006).

Angular distributions of 11Li on 208Pb @ 70 A MeV

Fig. 8. Partial, total and convoluted total angular distributions. Experimental Data from *T. Nakamura et. al, Phys. Rev. Lett. 252502 (2006).*

- Very good agreement of the total convoluted curve for almost all angles.
- Appreciable 0+ and 2+ contributions after $\theta \gtrsim 1$ deg.

Convoluted E1 strength distribution of ¹¹Li with the detector response

R-matrix (Red curve)

Fig. 9. The σ value is in MeV. Experimental Data from *T. Nakamura et. al, Phys. Rev. Lett.* 252502 (2006).

Why we overestimate the E1 distribution?

Why we overestimate the E1 distribution?

In the breakup reactions of ¹¹Li+²⁰⁸Pb @ 70 A MeV

$$\clubsuit$$
 $\frac{d\sigma}{dE}$ is measured directly

$$\stackrel{\bullet}{\star} \frac{d\sigma}{d\theta}$$
 is measured directly

$$\frac{dB(E1)}{dE}$$
 is measured indirectly (It depends on model assumptions)

We do not fit the data

How is determined experimentally dB(E1)/dE?

It is extracted from the equivalent photon method as

$$\frac{d\sigma^{\text{Exp}}}{dE} = \frac{16\pi^3}{9\hbar c} \frac{dB^{\text{Exp}}(E1)}{dE} \int_{b_{min}}^{\infty} 2\pi dbb \, N_{E1}(b, E)$$

- From b_{min} to exclude nuclear excitation.
- ❖ $N_{E1}(b, E)$ → Number of virtual photons incident on ¹¹Li by unit area.
- It is assumed to be one step and dominated by a single E1 multipolar transition.
- It comes from semi-classical perturbation theory.

¹¹Li is excited by absorption of a virtual photon from the Coulomb field of the target.

Estimation of the θ_c dependence in the dipole distribution of ¹¹Li

In non-relativistic regime

$$\frac{dB^{\text{Exp}}(E1)}{dE} = \frac{9}{32\pi} \left(\frac{\hbar v}{Z_T e}\right)^2 \frac{1}{\xi_{min} K_0(\xi_{min}) K_1(\xi_{min})} \frac{d\sigma^{\text{Exp}}}{d\Omega}$$

 $v \rightarrow \text{Projectile-target relative velocity}$

$$\xi_{min} = \frac{E - E_0}{\hbar v} b_{min},$$

 $E \rightarrow$ Excitation energy of ¹¹Li, $E_0 \rightarrow$ G. S. energy of ¹¹Li

$$E_0 \rightarrow G$$
. S. energy of ¹¹Li

$$b_{min} = \frac{Z_P Z_T e^2}{2 \tan \left(\frac{\theta_c}{2}\right)} \rightarrow \text{Min. Impact parameter for the semi-calssical}$$
 Coulomb trajectory

 $\theta_c \rightarrow$ maximum scattering angle (beyond θ_c nuclear interaction is important.)

Estimation of the θ_c dependence in the dipole distribution of ¹¹Li

Fig. 10. The θ_c values of 0.9, 1.46 and 2 deg correspond to b_{min} of 31, 19 and 14 fm respectively.

 \diamond Small θ_c provides a larger dipole distribution at low excitation energies.

Elastic scattering of ¹¹Li on ²⁰⁸Pb @ 70 A MeV in the Eikonal method

Three-body projectile (yellow curve)

One-body projectile (red curve)

- ❖ Reduction in the ¹¹Li+²08Pb elastic scattering due to flux going to breakup.
- $0 \lesssim \theta \lesssim 1 \rightarrow \text{Rutherford scattering.}$

Conclusions

- ❖ We have predicted a 1⁻ resonant eigenphase for ¹¹Li.
- ❖ The maximal contribution for the total breakup cross section is coming from the 1- partial wave.
- ❖ The breakup cross sections and angular distributions of ¹¹Li on ²⁰⁰Pb are in good agreement with the experimental data.
- ❖ To test our model we suggest to experimentalist to measure elastic scattering of ¹¹Li at high-energies.
- ❖ We need to clarify why we overestimate the dipole strength distribution of ¹¹Li with the same ¹¹Li wave functions that we had successful results for the breakup and angular distributions. Ideas are welcome!