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Motivation
To study elastic scattering and breakup cross sections of 11Li in a four-body eikonal

model.
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Motivation

To study elastic scattering and breakup cross sections of 11Li in a four-body eikonal
model.

Three-body Projectile

Target

» Bound states _
> Continuum states » Breakup cross sections

> Dipole strengths » Angular distributions



Introduction

< High-energy reactions are widely used to investigate Halo nuclei.

* High incident energies permits to handle the Schrodinger equation in a
simplified way: Eikonal approximation.

* Non-microscopic 2-Body and 3-Body descriptions of the projectile has been
introduced in the eikonal method.

Two-body projectile Three-body projectile

Elastic scattering, breakup Elastic scattering, breakup
Ex: 11Be+208Pb =(10Be+n)+2%8Ph . Ex; SHe+298Pp =(a+n+n)+2%8Ph
G. Goldstein, et. al; Phys. Rev. C 73, D. Baye, et. al; Phys. Rev. C 79,

024602 (2006). ‘024607 (20009).



Eikonal approximation for one-body projectile

We have to solve the Schrddinger equation
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At high-energies the wave function: Smooth deviation
from a plane wave
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i A+2'K6+V()<T>()—0
2UpT l oz T d r)=7>.

At high-energies |A®| « K |Z—§|, then

i . . Z / /
peik — iz EXPIKZ — — [~ Ver(b,Z")dZ'].

Structureless
projectile

Structureless
Target



Eikonal approximation for one body projectile

Ex: Elastic scattering of an incident uncharged particle

The elastic amplitude

f(0) = iK J Jo(gb)[1 — eX®)|bdb; q = 2K sin
0]

The eikonal phase

(00]

(b) L[y (b,2)dZ S
ST ) U=
& hv . o HpT
Extension to charge particles
x(b) = xn(b) + xc(b)
v v
Nuclear Coulomb Corrected to overcome

divergences due to the
Coulomb potential.



Elastic cross sections for n+2%8Pb at different
Incident energies

Eikonal

Fig 1. The energies are shown in MeV. The n+2%8Pb potential is taken from A. J.
Kooning and J. P. Delaroche, Nucl. Phys. A 713, 231 (2003).

% The agreement improves when the energy increases and 6 decreases.



Four-body eikonal

2 72
Hig® = ET(I), Er = FEy+ Zﬂfrr
FEy — G. S. energy of the projectile
h2 K2 " :
ey Initial relative P.T. energy

2
Hyp = —52—V2% + Vpr + H3p,

2upr

Nuclear optical potentials+Coulomb
Ver = Vor + Vrn + Vg

Factorizing: & (R, Z,§) = X2 (R, Z,7)

h? .
— (— V%—ih@z%—VpT)gb:O
2upT

The eikonal approx. |24l << K184
(High-energies)




Four-body eikonal

. . i (?
Eikonal w. f. < <I>elk(R,x,y)z‘Po(x,y)eXp[—% f VpT(b,Z’,x,y)dZ’]

Cross
sections

! ] Elastic
. _ _ B .
Eikonal elastic amplitude ——> S(b) = <‘P]°M° o | glx( )|‘P10M0”0> S

S~~—~— S~
3B bound state 3B bound state

Eikonal breakup amplitude ———» §(b) « <lkaKy(E)

e"X(”)|‘P10MO’T0> —> Bup obs.
v

3B scattering 3B bound state

04 5 State R-matrix
1-’ +’ +

Eikonal phase —> y(b) = —h—‘vf_oooo[VCT(b) + Vo (b) + Vo (b)]dZ
(Dynamics information)



Three-body model of the projectile

HypW/™ = EQJ/™

® Neutron 1
E < 0 - Bound state
= P
< > X @
Core -0 MeV, core+n+n
Core

) Eo = —52n

4
® Neutron 2

x,y: Jacobi coordinates _
E > 0 — Scattering states

p,a: Hyperspherical coordinates 7

p? = x* + y*: Hyperradius Core E;

—
- 0 MeV, +n +
a = arctan (%) : Hyperangle S

Qs = (&, U 0y 0\



Three-body model of the projectile

HBBLIJ]T[ == EI.IJ]T[

R, R
H33=—2 V 2 +Tcm+2‘
lT]/

2B potentials, Vcn Gaussian, W. Saxon

Kmax

/
@
pIr = p=> XyK(P)y (Qs)
2N
Hyperradial Function Eigenfunction of angular
(Unknown) momentum K (Known)

m = (—1)X - Parity of the relative motion of the 3B

.nl

A 4
n,

Spinless core

(Lo, Ly, L, S)

L=1+1,



Three-body bound states

HgBLIJ]T[ = ELIJ]T[

(00]

W = p7S2 N A (oYY (9s)

K=0 vy

N

X x(P) = Z Cori ui(p),

Eigenvalue problem Lagrange basis

e

It facilitates the calculations



Three-body continuum states: R-matrix

Internal region

N
R e) = ) Ol ()
i=1

External region

Xx(p = )

Qa

N e
—~,

Nuclear + Coulomb + Centrifugal
potentials

Coulomb + Centrifugal potentials

Xy (p = ) =AY [Hysc (k)8 i = Uyt Hiie (ko))

T
UVK V'K

Hankel functions

— Collision matrix — e%'® - Eigenphases

——> Large matrix for typical yK values

v



Dimension of the R-matrix calculations

J=0" NEN J=2"

Y = (L lyr L,S)

N — Number of Lagrange basis, typical N = 40

yK — Channels number

Matrices of — yKN X yKN

Example: ] = 2% and Kmax = 20
Matrices of — yKN X yKN = 265 - 40/ 265 - 40.= 10600 x 10600



Applications for °He: Three-body resonances

oo R]T[ N U]7T - (S—lUS — eZi(S)

*» Information about three-body resonances is contained in the eigenphases 6.

Fig. 2. Eigenphases for ®He for different J values (From P. Descouvemont et al, Nucl.
Phys. A 765 (2006) 370).



Applications for °He: E1 strength distribution

dE

(E) o ‘(qjkxky(E)|ME1|Lp]0MoTCO>

1- 3B cont. R-matrix 0* 3B bound state

Fig. 3. Electric dipole distribution for different Kmax values. From D.
Baye et al, Phys. ReV. C 79, 024607 (2009).



Applications in '"'Li: Conditions of the calculations

To calculate bound and scattering states of °Li+n+n

9Li+n interaction

% From H. Esbensen, et. al, Phys. ReV. C 56, 3054 (97).
** Non-existent elastic scattering experimental data.

% Fitted to reproduce a presumed p,,, resonance at 540 keV and a s virtual
state.

“9Li-n interaction multiplied by 1.0056 to reproduce G.S. energy of MLi =
- 0.378 MeV.

n+n potential

/7

+» Minnesota interaction

We those potentials we well reproduce r.m.s. radius-of ILi : 3.1 fm (exp. r.m.s
of 3.16 +0.11 fm).




Eigenphases of ''Li in a three-body model

0 L L L L L L L |
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E (MeV)

¢ Like-resonant behavior for 1- and 2* continuum
* Rise of the 0* phase shift with energy: “Like a superposition of resonances”



Convoluted E1 strength distribution of ''Li with
the detector response
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Fig 5. The o value is in MeV. Experimental Data from T. Nakamura et. al, Phys. Rev. Lett.
252502 (2006).

** We overestimate the E1 distribution in the peak region.



Four-body breakup eikonal

® Some applications by D. Baye, P. Capel, P. Descouvemont and Y.
Suzuki, Phys. ReV. C 71, 024607 (2009). They described the elastic
breakup cross section of °®He on 2%%Pb @ 70 A MeV.

® Qualities of the model:
v Contributions different from the dipole.

v It does not require ®He-2%8Pb potential: a-°®Pb potential and n-2°%Pb
potential are well known.

v It takes nuclear and Coulomb effects and their interference on the same
footing.

v There is not adjustable parameter.



Conditions of the calculations for 1Li on 29Pb

To calculate the breakup cross sections of Li on 28Pb @ 70 A MeV:

% 9Li-298pPb potential (lack of the potential):

Renormalized (91/3+208'3) a-2%8Pb interaction @ 70 A MeV of B. Bonin et. al.
(Following the same idea of P. Capel et. al, Phys. Rev. 68, 014612 (2003) for 1°Be
on 298pPh).

% Variation of the °Li-?®Pb potential was checked but it did not provide a
significant change to the breakup and angular distributions.

% n-208Pp potential:
Kooning and Delaroche, Nucl. Phys. A 713, 231 (2003).



Breakup cross sections of ''Li on 2°%Pb @ 70 A MeV
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Fig. 6. Partial and total eikonal breakup cross sections.

* Small correction of the 0* and 2* partial waves to the total cross section.



Convoluted breakup eikonal cross section
with the detector response

11ion 2%8Pb @ 70 A MeV

Theoretical data convoluted with a Gaussian of ¢ = 0.17VE MeV
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Fig. 7. Exp. Data from T. Nakamura et. al, phys. Rev. Lett. 252502 (2006).



Angular distributions of ''Li on ?°%Pb @ 70 A MeV
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Fig. 8. Partial, total and convoluted total angular distributions. Experimental Data
from T. Nakamura et. al, Phys. Rev. Lett. 252502 (2006).

/

% Very good agreement of the total convoluted curve for almost all angles.
s Appreciable 0* and 2* contributions after 6 = 1 deg.



Convoluted E1 strength distribution of ''Li with
the detector response
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Fig. 9. The o value is in MeV. Experimental Data from T. Nakamura et. al, Phys. Rev. Lett.
252502 (2006).

s Why we overestimate the E1 distribution?



Why we overestimate the E1 distribution?

In the breakup reactions of 1Li+2%8Pb @ 70 A MeV

do

X - IS measured directly > We fit the data
X % IS measured directly —> We fit the data
s 4B(E1)

>

o IS measured indirectly
(It depends on model assumptions)

—>  \We do not fit the data



How is determined experimentally dB(E1)/dE?

It is extracted from the equivalent photon method
as

doB¥P 1673 dBEXP(E1) j°°
b

min

X/

% From b,,;,, to exclude nuclear excitation.

% Ng,(b, E) - Number of virtual photons incident
on Li by unit area.

¢ It is assumed to be one step and dominated by
a single E1 multipolar transition.

% It comes from semi-classical perturbation
theory.

Virtual y

@

208pp

ULi is excited by absorption
of a virtual photon from the
Coulomb field of the target.



Estimation of the 6. dependence in the dipole
distribution of "'Li

In non-relativistic regime

dBEXP(E1) 9 (in7)2 1 doEXP

dE _327T ZTe gminKO(gmin)Kl(fmin) d()

E—E,

v — Projectile-target relative velocitiy, Emin = o bmin,

E — Excitation energy of 1Li, E, —» G. S. energy of Li
ZpZye? : _ _
Doin = 7N > Min. Impact parameter for the semi-calssical
2 tan (76) Coulomb trajectory

6. — maximum scattering angle (beyond 6, nuclear interaction is important.)



Estimation of the 6. dependence in the dipole
distribution of 1Li
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Fig. 10. The 6, values of 0.9, 1.46 and 2 deg correspond to b,,;,, of 31, 19 and
14 fm respectively.

/

s Small 6, provides a larger dipole distribution at low excitation energies.



Elastic scattering of ''Li on 2°°Pb @ 70 A MeV in the
Eikonal method

Three-body projectile (yellow curve) One-body projectile

9Li+2%8Pb

11Li+208pp
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% Reduction in the 1Li+2%8Pb elastic scattering due to flux going to breakup.
% 0 < 6 <1 - Rutherford scattering.



Conclusions

% We have predicted a 1- resonant eigenphase for 1Li.

* The maximal contribution for the total breakup cross section is coming from the
1- partial wave.

% The breakup cross sections and angular distributions of Li on 2%8Pb are in good
agreement with the experimental data.

*» To test our model we suggest to experimentalist to measure elastic scattering of
1L at high-energies.

“* We need to clarify why we overestimate the dipole strength distribution of *LLi
with the same Li wave functions that we had successful results for the breakup
and angular distributions. Ideas are welcome!



