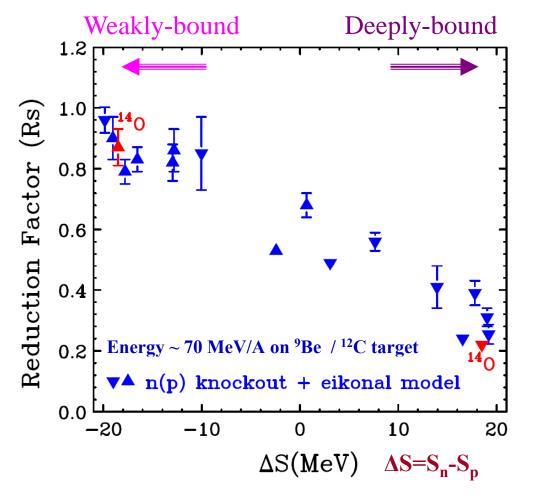

Nucleon Correlation Studies

Cross Section Measurements coupled with Reaction & Structure Theories

Reaction Model : Interface between Observables ↔ Nuclear Structure Knowledge


- Conventional SM
- Monte Carlo SM
- Tensor-optimized SM
- ab-initio Calc.
- Mean-Field

Direct Reaction Data

- Transfer reactions
- Knockout reaction using Be / C target
- Knockout reaction using proton target

¹⁴O : ∆S ~20 MeV, p-shell spherical (*ab initio Calc*)
→ reliable Structure to test Reaction Models

Asymmetry Dependence of Nucleon Correlations

Understanding Nucleon Removal from Exotic Nuclei at Intermediate Energy (deeply-bound) !

Knockout Reaction Theory: Eikonal & Sudden Approximations

J. Tostevin et al., J. Phys. G, Part. Phys. 25, 735 (1999)

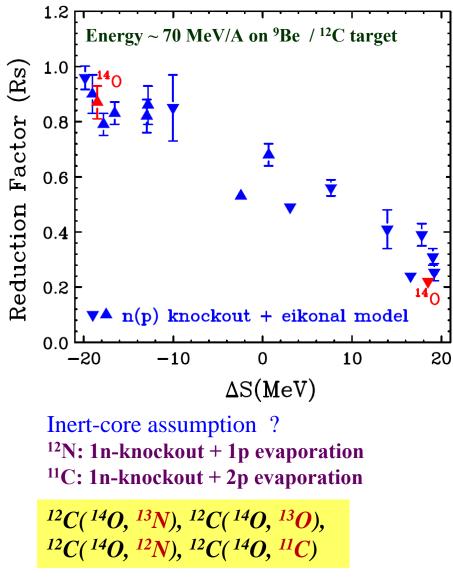
A. Gade et al., Phys. Rev. C 77, 044306 (2008) and reference therein

Rs : Strong Asymmetry Dependence

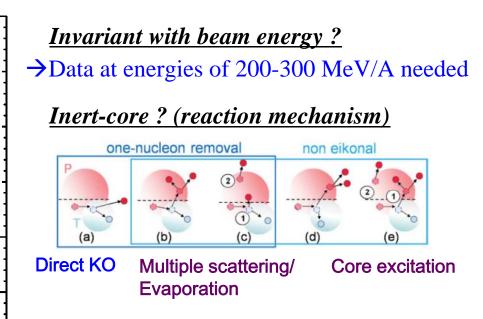
¹⁴O knockout : F. Flavigny, A. Obertelli et al.,Paper in preparation

Transfer Reaction: Weak Dependence

p(^{34,36,46}Ar,d) at 33 MeV/A


J. Lee et al., Phys. Rev. Lett 104, 112701 (2010)

GANIL E569S – SPIRAL Beam *d*(¹⁴*O*,*t*) ¹³*O at* 18 *MeV/A*


Rs : No Strong Reduction

F. Flavigny, A. Obertelli, L. Nalpas et al. (CEA Saclay)., paper in preparation

Composite (⁹Be, ¹²C) - Knockout Reaction Model

✓ Other Reaction Model: TDSE

Intranuclear Cascade Model (INC)

(with nuclear-structure input)

Proj.		ℓj	C^2S	σ_{exp} (mb)	$\sigma_{ m casc}$	$\sigma_{ m evap}$ (mb)	σ	σ _{eik} (mb)	δ
¹⁴ O	-n	$p_{3/2}$	3.7	13.4 ± 1.4	11.6	4.2	15.8	50	0.3
	-p	$p_{1/2}$	1.8	67 ± 6	22.5	31.4	53.9	41.2	1.3
²⁴ Si	-n	$d_{5/2}$	1.7	9.8 ± 1.0	9.7	2.6	12.3	23.3	0.5
	-p	$d_{5/2}$	3.4	67.3 ± 3.5	24.8	19.7	44.5	65.5	0.7
^{24}O	-n	s _{1/2}	1.8	63 ± 7	34.3	4.2	38.5	51.2	0.8
²⁸ S	-n	$d_{5/2}$	3.1	11.9 ± 1.2	12.6	3.2	15.8	33.2	0.5
³² Ar	-n	<i>d</i> _{5/2}	4.1	10.4 ± 1.3	11.2	7.1	18.3	34.6	0.5

C. Louchart, A. Obertelli et al., Phys. Rev. C 83, 011601 (R) (2011)

Proton-induced Knockout Reactions

"Proton" target – structure-less probe

- \rightarrow simpler reaction mechanism
- \rightarrow sensitive to larger part of wave function

Active Developments of Proton targets

→ Powerful technique for spectroscopy at high energy

Data needed to Benchmark Framework:

(*p*,*pN*) Experimental Technique coupled w/ Reaction Theory for Nuclear Correlation Studies in Exotic Nuclei!

Reaction Theory:								
CDCC,	DWIA,	AGS/ Faddeev						

$p(^{14}O, 2p)^{13}N, p(^{14}O, pn)^{13}O, p(^{14}O, p)^{14}O, p(^{14}O, X)^{12}N, p(^{14}O, X)^{11}C$

Fully <u>Exclusive</u> Measurements with Detection of Knocked-out protons & neutrons Elastic proton-Scattering \rightarrow Reliable extraction of Distorted Potentials for DWIA Studies of Multiple-nucleon Knockout & Evaporation Channels

Possible Questions for Discussion

- How well do we understand reaction mechanisms for nucleon-removing reactions (deeply bound nucleon) empirically and fundamentally ?
- How reliable are spectroscopic factors from knockout (light-nuclus (⁹Be/ ¹²C) targets & single-nucleon (hydrogen) targets) ?
- What are the uncertainties in reaction models -- do they change the reliability of spectroscopic information ?

This discussion bring together experimenters and theorists to discuss the needs from each side and offer guidance for future research efforts.

✓ Comments & Criticisms to Reaction Models

→ What Data are needed to Verify Models & Benchmark Direct Nuclear Reaction Mechanisms (deeply-bound nucleons)

Understanding Reaction Mechanism \rightarrow Nucleon Correlation Studies