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Outline:

1. Brief remainder of the “standard” CDCC method.

2. Testing the standard CDCC method against the Faddeev method.

● d+12C at 56 MeV: elastic scattering and exclusive breakup.

● Scattering on protons: effect of NN interaction

3. Recent extensions of the standard CDCC method

● Extension to three-body projectiles (4-body CDCC)

● Beyond the frozen core approximation: inclusion of core-excitation.

4. A simple model for core excitation.

● Application to 19C+p at 70 MeV

● Application 11Be scattering on 12C and 208Pb



Remainder of the “standard” CDCC method
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Example: 11Be+p → (10Be + n) + p

● Effective 3-body Hamiltonian with the cluster in g.s.

● Three-body wf expanded in projectile (11Be) inter-
nal states

● Breakup treated as single-particle excitations to
n+10Be continuum

● Continuum is discretized in energy bins and trun-
cated in energy and angular momentum

● Provides elastic and elastic breakup, but not trans-
fer.

p+   Be11

p+ (n +  Be)        10



Generalizations of the standard CDCC method
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● Explicit inclusion of target excitation

☞ Yahiro et al, Prog. Theor. Phys. Suppl. 89 (1986)32

● Extension to three-body projectiles (6He).

☞ Matsumoto et al, NPA738 (2004) 471, PRC70 (2004) 061601(R).

☞ Rodriguez-Gallardo et al, PRC72 (2005) 024007, PRC77 (2008) 064609.

● Explicit inclusion of core excitation

☞ Summers et al, PRC74 (2006) 014606, PRC76 (2007) 014611



Extension of three-body projectiles
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Benchmark calculations of the “standard” CDCC method against
Faddeev within a pure three-body model.



CDCC versus Faddeev
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● The exact solution of a three-body scattering problem is formally given by
the Faddeev equations.

Ψ = Ψ1 +Ψ2 +Ψ3
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● The CDCC method can be derived as an approximated solution of the
Faddeev equations in a truncated model space (Austern,Yahiro,Kawai,
PRL63 (1989) 2649)

● For light systems, Faddeev equations can be now solved, so a comparison
with CDCC is possible.



CDCC versus Faddeev
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BENCHMARK CALCULATIONS FOR CDCC VS FADDEEV

● Systems:

✦ d+12C @ Ed=56 MeV

✦ d+58Ni @ Ed=80 MeV

✦ 19C+p @ E/A = 70 MeV

● Faddeev: AGS formulation
(Alt, Grassberger, Sandas , Nuc. Phys. B 2(1967)167)

✦ Solves Faddeev equations in momentum space

✦ Coulomb included by means of screening procedure

✦ Does not require discretization of the continuum.



CDCC vs Faddeev: elastic scattering
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d+12C at 56 MeV
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☞ CDCC and Faddeev fully consistent!



CDCC vs Faddeev: exclusive breakup x-sections
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Example: d+12C → p+n+ 12C
N. Matsuoka et al., Nucl. Phys. A 391, 357 (1986).

θn

θp

C12

θ <0p

θ > 0pd

p

n

Protons and neutrons measured in coincidence.



CDCC vs Faddeev: exclusive breakup
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Proton angular distribution for fixed θn.
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CDCC vs Faddeev: exclusive breakup
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Proton energy distribution for fixed θn and θp
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CDCC vs Faddeev: scattering on protons
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Test case:
19C+ p @ E/A = 69 MeV (RIKEN), Satou et el., PLB 660 (2008) 320.
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CDCC vs Faddeev: scattering on protons
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Test case:
19C+ p @ E/A = 69 MeV (RIKEN), Satou et el., PLB 660 (2008) 320.
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☞ Microscopic DWBA calculations support a 1/2+ → 5/2+ transition.



19C+p within a three-body reaction model
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● 19C states treated as s.p. configurations on top of the 18C in the g.s.

✦ 19C(1/2+) = |18C(0+)⊗ νs1/2〉

✦ 19C(5/2+) = |18C(0+)⊗ νd5/2〉

● Pairwise interactions:

✦ n−18C: WS potentials reproducing 1/2+1 b.s. and 5/2+2 resonance.

✦ p−18C: global optical potential (Watson et al, PR182 (1969) 182)

✦ p− n: central Gaussian potential reproducing the deuteron gs and 3S1

phase-shifts



Comparison of calculations with the data
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✔ Faddeev and CDCC provide fully consistent results

✘ The calculations reproduce the magnitude, but NOT the shape.

✦ Pair interactions?

✦ Structure model?



Effect of the p-n interaction
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Replace simple p-n central interaction by the more realistic CD-Bonn:

0 20 40 60
θc.m.  (deg)

10
-1

10
0

10
1

10
2

dσ
/d

Ω
c.

m
.  (

m
b/

sr
)

Faddeev: CD-Bonn NN
Faddeev: Gaussian NN



Effect of the p-n interaction
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Replace simple p-n central interaction by the more realistic CD-Bonn:
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☞ The inelastic cross section is extremely sensitive to the choice of the NN interaction.
☞ A simple single-particle excitation mechanism cannot explain the data!
☞ We need to go beyond the frozen core approximation ⇒ core excitation.
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Part II: The effect of core excitation in the scattering of weakly bound nuclei

(work done with R. Crespo and R. C. Johnson)



Valence vs core excitation mechanisms in few-body reaction models
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Deuteron scattering:

n

Pb

p

d

☞ If the target is inert, purely three-body scattering.



Valence vs core excitation mechanisms in few-body reaction models
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11Be+208Pb

10Be11Be

n

Pb

☞ Valence excitation mechanism.

11Be

10Be*

n

Pb

☞ Core-excitation mechanism



Effect of core excitation in scattering observables
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● Elastic scattering (adiabatic recoil model): K. Horii et al, PRC81 (2010) 061602

☞ Some effects found in 8B +12 C.

● Transfer (DWBA, CCBA): Winfield et al, NPA 683 (2001) 48, Fortier et al, PLB
461 (1999) 22

☞ Very important to explain the production of 10Be(2+) in 11Be(p,d)10Be

● Breakup (XCDCC) Summers et al, PRC74 (2006) 014606, PRC76 (2007) 014611

☞ Very small effects in the cases studied (11Be, 17C)



The 19C+p case revisited: structure model
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Shell-model spectroscopic factors (WBP) for 19C= 18C+n

19C(1/2+1 ) g.s.

Core state 2s1/2 1d5/2 1d3/2

0+1 0.58 – –
2+1 – 0.47 0.0085

(. . . ) (. . . ) (. . . ) (. . . )

19C(5/2+2 ) resonance

Core state 1d5/2 1d3/2 2s1/2

0+1 0.035 – –
2+1 0.29 0.0087 0.61

(. . . ) (. . . ) (. . . ) (. . . )

☞ Shell-model calculations predict a significant admixture of core excitation in both the
initial and final states.

☞ These core excited admixtures should be taken into account in the structure and in
the reaction models



A DWBA model for core excitation in inelastic and
breakup
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● Three-body model: two-body projectile (core+valence) + target

ξ
Rct

Rvt

v

R
r

c

target

p

● DWBA amplitude with core excitation:

T JM,J′M ′

if = 〈χ
(−)
f (~R)Ψf

J′M ′(~r, ~ξ)|V̂T |χ
(+)
i (~R)Ψi

JM (~r, ~ξ)〉

● Transition operator:
V̂T = Vvt(~Rvt) + Vct(~Rct, ~ξ)

☞ Vct(~Rct, ~ξ) responsible for dynamic core excitation.

● ΨJM (~r, ~ξ) = projectile states ⇒ static core excitation.



Structure part: rotor model for the 19C nucleus
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● 18C+n states calculated in a particle-rotor model:

Hproj = Tr + hcore(~ξ) + Vvc(~r, ~ξ)

● Projectile states expanded in |α; JM〉 ≡ |(ℓs)j, I; JM〉 basis:

ΨJM (~r, ~ξ) =
∑

ℓ,j,I

RJ
ℓ,j,I(r)

[
[Yℓ(r̂)⊗ χs]j ⊗ ΦI(~ξ)

]

JM

● The unknowns RJ
ℓ,j,I(r) can be obtained by direct integration of the

Schrödinger equation or by diagonalization in a suitable discrete basis
(pseudo-state method).



Scattering amplitude
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● Multipole expansion for the core-target potential

Vct(~Rct, ~ξ) ≃ V
(0)
ct (Rct)︸ ︷︷ ︸

Valence excitation

+
∑

λ>0,µ

V
(λ)
ct (Rct)Yλµ(r̂ct)Y

∗

λµ(ξ̂)

︸ ︷︷ ︸
Core excitation

● Replacing the Vct(~Rct, ~ξ) expansion in the scattering amplitude:

T if = T if
(val) + T if

(corex)

● Valence excitation amplitude:

T if
val = 〈χ

(−)
f (~R)Ψf

J′M ′(~r, ~ξ)|Vvt(Rvt) + V
(0)
ct (Rct)|χ

(+)
i (~R)Ψi

JM (~r, ~ξ)〉



Evaluation of the core contribution (no-recoil)
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Neglecting core-recoil effects (~Rct ≈ ~R):

T JM,J′M ′

corex =
∑

λ>0,µ

〈J ′M ′|JMλµ〉
∑

α,α′

〈RJ′

α′ |RJ
α〉G

(λ)
αJ,α′J′ T̃

(λµ)
ct (I → I ′)

● T̃
(λµ)
ct (I → I ′) is related to the free core-target inelastic amplitude for a core

transition IMI → IM ′

I :

T̃
(λµ)
ct (I → I ′) = T

IMI ,IM
′

I

ct /〈I ′M ′

I |IMIλµ〉

● G
(λ)
αJ,α′,J′ ≡ δj,j′(−1)λ+j+J′+I Ĵ Î ′

{
J ′ J λ
I I ′ j

}



Application to 19C+p → 18C +n +p
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● 18C treated in a rotor model with β = 0.5

● Core states restricted to I = 0+, 2+

State |0+ ⊗ s1/2〉 |0+ ⊗ d5/2〉 |2+ ⊗ s1/2〉 |2+ ⊗ d5/2〉

Ground state 73% – – 24%
5/2+ resonance – 26% 74% ≪

● 18C+n and 18C+p described with deformed potentials with β2 = 0.5.



Application to 19C+p → 18C +n +p
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☞ The core-excitation mechanism gives the dominant contribution to the cross
section.

☞ This mechanism improves the description of the shape with respect to the
single-particle calculation.



Application to 19C+p → (18C +n) +p
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Application to 11Be scattering
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Pb



Core excitation in 11Be scattering
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☞ 11Be states are known to contain significant admixtures of core-excited
components.

S(0+⊗ 2s) S(2+⊗ 1d)
Analysis of 10Be(d,p)11Be [1] 0.44 -
Shell-model (Warburton & Brown [2] ) 0.74 0.19
Vibrational coupling (Vinh-Mau [3] ) 0.80 0.20
GCM (Descouvemont [4]) 0.92 0.07
Coulomb breakup [5] 0.72 0.28

1. N.K. Timofeyuk and R.C. Johnson, Phys.Rev. C59 (1999)1545.

2. E.K. Warburton and B.A. Brown, Phys. Rev. C 46 (1992) 923.

3. N. Vinh Mau, Nucl. Phys. A 592 (1995) 33 N. Vinh Mau and J.C. Pacheco, Nucl. Phys. A 607 (1996) 163.

4. P. Descouvemont, Nucl. Phys. A 615 (1997) 261

5. Fukuda et al, PR C70 (2004) , 054606.



Application to 11Be+12C
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Fukuda et al, Phys. Rev. C70 (2004) 054606)



Application to 11Be+12C
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Fukuda et al, Phys. Rev. C70 (2004) 054606)



11Be model
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● Particle-rotor model of Nunes et al, NPA596 (1996) 171 (β2 = 0.67).

● Only 10Be gs (0+) and 1st excited state (2+).

● Orbital angular momenta of the neutron restricted to ℓ ≤ 2.

● Reproduces 1/2+, 1/2− bound states and 5/2+, 3/2+ resonances.
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B(E1) response of 11Be
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B(E1) response of 11Be
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B(E1) extracted in a model-dependent way ⇒ compare directly cross sections
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Application to 11Be +12 C
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● Nuclear effects dominant (EPM model not valid!)

● At these energies the DWBA approximation should be valid, so we use the
core-excitation model:

Tif = T
(val)
if + T

(corex)
if



Application to 11Be +12 C
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● Coherent superposition valence+core describes
very well the shape.

● Magnitude overestimated by a factor of ∼ 3!



Application to 11Be +12 C
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Application to 11Be +12 C
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The calculations are found to depend strongly on the deformation parameter:
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Calculations without core excitation 11Be +12 C
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Conclusions
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● For elastic and exclusive breakup observables, the CDCC method has
proven to be an accurate approximation to the “exact” (Faddeev) solution.

● For the scattering of a core+neutron system on a proton target, the breakup
is very sensitive to the p-n interaction ⇒ needs to be incorporated in
existing implementations of the CDCC method.

● CDCC calculations are often based on the frozen core approximation, but
in many cases core excitation seems to play a very important role in the
resonant breakup of halo nuclei with deformed core. These effects need to
be taken into account to extract reliable structure information from these
reactions.



Core excitation in structure
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Core excitation in 11
Be+p breakup
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Eg: 11Be +p
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Core excitation in 11
Be+p breakup
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Eg: 11Be +p
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Eg: Ground-state and 5/2+ resonance in 11Be
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Core excitation in elastic scattering
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Core excitation in 8B+12C elastic scattering:

*
(quoted from K. Horii et al, PRC81 (2010) 061602)
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Zinser  et al, NPA 619, 151 (1997)
Nakamura  et al, PRL96, 252502 (2006)
Standard di-neutron model: ε
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=-0.37 MeV

Improved di-neutron model: ε
2n-9Li

=-0.54 MeV
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Why is important studying core excitation?

October 25th 2011 42 / 44

● Many nuclei of current interest (eg. exotic nuclei) are best studied within
few-body models.

● The few-body constituents are frequently deformed clusters (eg. Be, C
isotopes)

● Inclusion of the core degrees of freedom can be essential to:

✦ Understand the dynamics

✦ Extract reliable structure information
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Example: 19C+p at RIKEN ( Satou et el., PLB660 (2008) 320

11Be

10Be

NEUT
VETO

HOD

FDC

BDC
SF3

Dipole Magnet

Neutron

Target

☞ Excitation energy can be reconstructed from core-neutron coincidences
(invariant mass method)
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Example: 19C+p at RIKEN ( Satou et el., PLB660 (2008) 320

19

n
p

n

C
C18

☞ Excitation energy can be reconstructed from core-neutron coincidences
(invariant mass method)
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☞ Microscopic DWBA calculations, support a 1/2+ → 5/2+ mechanism Satou et
el., PLB660 (2008) 320.
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