Hypernuclei with a Microscopic Lambda-Nucleon Force

with

M. Baldo & F. Burgio & U. Lombardo & H.-J. S., Catania
K. Hagino & H. Sagawa & Myaing Thi Win, Japan
A. Polls & A. Ramos & I. Vidaña, Barcelona
J. Cugnon & A. Lejeune, Liège
E.G. Zhao & X.R. Zhou, China
T. Rijken, Nijmegen

- BHF approach of hypernuclear matter
- Neutron star properties
- Hypernuclei

PLB 355, 21 (1995) PRC 57, 704 (1998) PRC 61, 055801 (2000) PRC 62, 064308 (2000) PRC 64, 044301 (2001) PRC 73, 058801 (2006) PRC 76, 034312 (2007) PRC 78, 028801 (2008) PRC 78, 054306 (2008) PTP 123, 569 (2010) PRC 84, 035801 (2011)

Hypernuclear Matter:

 $N = qqq: {n p} (939 \text{ MeV})$ $Y = qqs: {\Lambda^0 (1116 \text{ MeV}) \over \Sigma^{+0-} (1193 \text{ MeV})}$

 V_{NN} : Argonne, Bonn, Paris, ... V_{NY} : Nijmegen (NSC89, NSC97, ...) V_{YY} : ? (no scattering data)

In free space weak decay: $Y \rightarrow N + \pi$ etc. ($c\tau \approx 8$ cm) In dense nucleonic medium the decay is Pauli-blocked !

Brueckner Theory of Nuclear Matter:

• Effective in-medium interaction G from potential V:

$$G = V + V G$$
parameter-free !
$$e_k = \frac{k^2}{2m} + U(k)$$

Compute: binding energy, s.p. properties, cross sections, ...

K.A. Brueckner and J.L. Gammel; PR 109, 1023 (1958) for nuclear matter Extension to hypernuclear matter ...

Include Hyperons:

• Technical difficulty: coupled channels:

Include Hyperons:

• Technical difficulty: coupled channels:

• Hyperon-nucleon potentials (NSC89) vs. Paris NN:

 \blacktriangleright "Soft" cores, Strong coupling $N \land \leftrightarrow N\Sigma$

• Single-particle potentials in nuclear matter ($\rho_N = \rho_0$):

V18+UIX' NN & NSC89 YN , $\rho_N = 0.17 \text{ fm}^{-3}$, $\rho_{\Lambda} = \rho_{\Sigma} = 0$

Hyperons are weaker bound than nucleons Only slight dependence on proton fraction $x_p = \rho_p / \rho_N$

• Results with ESC08b NY potential:

 $\hookrightarrow \Sigma^- N$ interaction is repulsive

• Lambda effective mass and hyperon well depths:

Three-Nucleon Forces:

- Only small effect required [$\delta(B/A) \approx 1 \text{ MeV}$ at ρ_0]
- Model dependent, no final theory yet
- Use and compare microscopic and phenomenological TBF...
 - Microscopic TBF of P. Grangé et al., PRC 40, 1040 (1989): Exchange of π, ρ, σ, ω via Δ(1232), R(1440), NN
 Parameters compatible with two-nucleon potential (Paris, V₁₈,...)
 - Urbana IX phenomenological TBF: Only 2π -TBF + phenomenological repulsion Fit saturation point

Hypernuclei: Single, Double, Multi-Lambda:

- Created by (π⁺, K⁺), (K⁻, π⁻), (e, e'K⁺) reactions (BNL, CERN, JLAB, KEK, LNF, GSI, J-PARC, ...)
- Experimentally known (heavy) Λ hypernuclei:
 - Single-lambda: ¹³_AC, ¹⁶_AO, ²⁸_ASi, ⁴⁰_ACa, ⁸⁹_AY, ¹³⁹_ALa, ²⁰⁸_APb, ...
 Double-lambda: ⁶_{AA}He, ^{10,11,12}_{AA}Be, ¹³_AB (8 events !)
 Multi-lambda: None !
- Observables:
 - Single-particle levels: e_a^i $(q = n, p, \Lambda)$
 - Binding energy: $B_{\Lambda} = E(^{A-1}Z) E(^{A}_{\Lambda}Z)$

• Rms radii:
$$R_q = \sqrt{\langle r^2 \rangle_q}$$

Lambda Hypernuclear Chart:

568 O. Hashimoto, H. Tamura / Progress in Particle and Nuclear Physics 57 (2006) 564–653

Fig. 1. Λ hypernuclear chart. The experimentally identified Λ hypernuclei and the experimental methods used to study them (reaction spectroscopies of (K^-, π^-) , (π^+, K^+) , $(e, e'K^+)$, etc., γ spectroscopy, and the emulsion method) are shown.

Typical example: ⁴⁰_ΛCa :

- Theoretical model:
 - Skyrme-Hartree-Fock (SHF) [Vautherin & Brink, PRC 5, 626 (1972)]
 - Standard NN force: SIII, SGII, SkI4, SLy4, ...
 - Effective microscopic AN force from BHF results ...

• SHF Schrödinger equation:

$$\left[-\nabla \cdot \frac{1}{2m_q^*(r)} \nabla + V_q(r) - i \nabla W_q(r) \cdot (\nabla \times \boldsymbol{\sigma})\right] \phi_q^i(r) = -e_q^i \phi_q^i(r)$$

- SHF mean fields: $V_N = V_N^{SHF} + \frac{\partial \epsilon_{N\Lambda}}{\partial \rho_N}$, $V_{\Lambda} = \frac{\partial \epsilon_{N\Lambda}}{\partial \rho_{\Lambda}}$, $W_{\Lambda} = 0$
- Effective mass $m_{\Lambda}^{*}(\rho_{N}, \rho_{\Lambda})$ and Energy density due to NA interaction: no free parameters $\epsilon_{N\Lambda}(\rho_{N}, \rho_{\Lambda}) = (\rho_{N} + \rho_{\Lambda}) \frac{B}{A}(\rho_{N}, \rho_{\Lambda}) - \rho_{N} \frac{B}{A}(\rho_{N}, 0) - \rho_{\Lambda} \frac{B}{A}(0, \rho_{\Lambda})$

• Coupled equations for eigenvalues e_{α}^{i}

• SHF Schrödinger equation:

$$\left[-\nabla \cdot \frac{1}{2m_q^*(r)} \nabla + V_q(r) - i \nabla W_q(r) \cdot (\nabla \times \boldsymbol{\sigma})\right] \phi_q^i(r) = -e_q^i \phi_q^i(r)$$

• SHF mean fields:

$$V_N = V_N^{\text{SHF}} + \frac{\partial \epsilon_{N\Lambda}}{\partial \rho_N}$$
, $V_{\Lambda} = \frac{\partial \epsilon_{N\Lambda}}{\partial \rho_{\Lambda}}$, $W_{\Lambda} = 0$

• Effective mass $m^*(\rho_N, \rho_\Lambda)$ and from BHF Energy density due to NA interaction: no free parameters $\epsilon_{N\Lambda}(\rho_N, \rho_\Lambda) = (\rho_N + \rho_\Lambda) \frac{B}{A}(\rho_N, \rho_\Lambda) - \rho_N \frac{B}{A}(\rho_N, 0) - \rho_\Lambda \frac{B}{A}(0, \rho_\Lambda)$

• Coupled equations for eigenvalues e_{α}^{i}

Results: Single-A Hypernuclei:

• Lambda single-particle levels:

Fair agreement with NSC89 and NSC97f potentials No indication of strong hyperon TBF Deformed (hyper)nuclei, e.g., ³⁰Si:

Strong dependence on the NN Skyrme force, not predictive

➡ The \Lambda's might 'pull' together a nucleus with a weak deformation minimum

• Neutron-rich (halo) hypernuclei, e.g., Be isotopes:

(SHF+BCS, better approach required for halo states)

• Neutron-rich (halo) hypernuclei, e.g., Be isotopes:

(SHF+BCS, better approach required for halo states)

Results: Double-A Hypernuclei:

Important observable: Bond energy:

$$\Delta B_{\wedge\wedge} = 2E(^{A-1}Z) - E(^{A-2}Z) - E(^{A}Z)$$

- Experimental: 3+5 events:
 - 3 (1960's): ${}^{6}_{\Lambda\Lambda}$ He, ${}^{10}_{\Lambda\Lambda}$ Be, ${}^{13}_{\Lambda\Lambda}$ B : $\Delta B_{\Lambda\Lambda} \approx 5$ MeV • 5 (1991...): ${}^{6}_{\Lambda\Lambda}$ He, ${}^{10,11,12}_{\Lambda\Lambda}$ Be, ${}^{13}_{\Lambda\Lambda}$ B : $\Delta B_{\Lambda\Lambda} \approx -1.5...4$ MeV !?

• Theoretical:

$$\Delta B_{\wedge\wedge} \approx U_{\wedge}^{(\wedge)}(\bar{\rho}_{\wedge}) - U_{\wedge}^{(\wedge)}(2\bar{\rho}_{\wedge}) \approx -U_{\wedge}^{(\wedge)}(\bar{\rho}_{\wedge}) , \quad \bar{\rho}_{\wedge} \approx \rho_0/A$$

• Results with Nijmegen potentials:

	$\Delta B_{\Lambda\Lambda}$ [MeV]		
	NSC89	NSC97a	NSC97f
¹⁰ Be	-0.34	+0.37	-0.35
¹⁴ C	-0.41	+0.32	-0.47
¹⁸ 0	-0.41	+0.32	-0.41
³⁰ Si	-0.33	+0.25	-0.35
⁴² Ca	-0.31	+0.19	-0.32
$^{92}_{\Lambda\Lambda}$ Zr	-0.21	+0.09	-0.24
¹⁴² Ce	-0.14	+0.05	-0.18
$^{210}_{\Lambda\Lambda}$ Pb	-0.12	+0.01	-0.15

No YY components: core rearrangement effect

← NSC89,97 potentials predict too small ∧∧ binding

Results: Multi-A Hypernuclei:

Density profiles

Outlook:

Future work on Λ hypernuclei:

- New NY, YY potentials (ESC08 ...)
- Spin-orbit force
- Hyperonic TBF
- Constrained AN Skyrme force
- HFB for dripline (hyper)nuclei

Outlook:

Future work on Λ hypernuclei:

- New NY, YY potentials (ESC08 ...)
- Spin-orbit force
- Hyperonic TBF
- Constrained AN Skyrme force
- HFB for dripline (hyper)nuclei

• What about $N\Sigma^-$ interaction, Σ^- hypernuclei ? :

- Older data indicate attraction
- New experiment repulsion, quantitatively unknown

ESC08 preferred; NSC97,ESC04 excluded; need data !