

# Spectroscopy and correlations probed via two-nucleon knockout reactions



DCEN Workshop 25<sup>th</sup> October 2011

Edward Simpson University of Surrey

## Outline

- Introduction
- Two-nucleon removal reactions
- How can we learn about structure?
  - Final state spins from momentum distributions
  - Two-nucleon spatial correlations
  - Tests of underlying structure
- N=Z nuclei
  - Stable nuclei
  - np-correlations?
- Regions of changing structure
- Conclusions



|                  |                  |                  |                  |                  |                  |                      | 0                |                  |                  | <sup>67</sup> Br    | <sup>68</sup> Br | <sup>69</sup> Br | <sup>70</sup> Br | <sup>71</sup> Br | <sup>72</sup> Br | <sup>73</sup> Br | <sup>74</sup> Br | <sup>75</sup> Br | <sup>76</sup> Br           | 77Br             | <sup>78</sup> Br | <sup>79</sup> Br | <sup>80</sup> Br |
|------------------|------------------|------------------|------------------|------------------|------------------|----------------------|------------------|------------------|------------------|---------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------------------|------------------|------------------|------------------|------------------|
|                  |                  |                  |                  |                  |                  | =2                   | ð                |                  | <sup>65</sup> Se | <sup>66</sup> Se    | 67Se             | <sup>68</sup> Se | <sup>69</sup> Se | <sup>70</sup> Se | <sup>71</sup> Se | <sup>72</sup> Se | <sup>73</sup> Se | <sup>74</sup> Se | <sup>75</sup> Se           | <sup>76</sup> Se | <sup>77</sup> Se | <sup>78</sup> Se | <sup>79</sup> Se |
|                  |                  |                  |                  |                  | <sup>60</sup> As | <sup>61</sup> As     | <sup>62</sup> As | <sup>63</sup> As | <sup>64</sup> As | <sup>65</sup> As    | 66As             | <sup>67</sup> As | <sup>68</sup> As | <sup>69</sup> As | <sup>70</sup> As | 71 <b>As</b>     | 72 <b>As</b>     | <sup>73</sup> As | <sup>74</sup> As           | <sup>75</sup> As | <sup>76</sup> As | 77 <b>As</b>     | <sup>78</sup> As |
|                  |                  |                  |                  | <sup>58</sup> Ge | <sup>59</sup> Ge | 60Ge                 | ⁵¹Ge             | <sup>62</sup> Ge | 63Ge             | 64Ge                | 65Ge             | <sup>66</sup> Ge | 67Ge             | <sup>68</sup> Ge | <sup>69</sup> Ge | ™Ge              | <sup>71</sup> Ge | 72Ge             | <sup>73</sup> Ge           | <sup>7₄</sup> Ge | <sup>75</sup> Ge | <sup>76</sup> Ge | 77Ge             |
|                  |                  |                  | 56Ga             | ⁵7Ga             | 58Ga             | 59 <mark>1</mark> 32 | <sup>60</sup> Ga | sosp             | <sup>62</sup> Ga | 63G.                | <sup>64</sup> Ga | 65Ga             | 66Ga             | 67Ga             | <sup>68</sup> Ga | <sup>69</sup> Ga | ™Ga              | 71Ga             | 72Ga                       | <sup>73</sup> Ga | <sup>74</sup> Ga | <sup>75</sup> Ga | <sup>76</sup> Ga |
|                  |                  | ⁵⁴Zn             | ⁵⁵Zn             | ⁵⁵Zn             | <sup>57</sup> Zn | 58 (n                | sy               | mme              | etry             | 62 <mark>Z</mark> 1 | <sup>63</sup> Zn | ⁵⁴Zn             | ⁵⁵Zn             | 66Zn             | 67Zn             | 68Zn             | <sup>69</sup> Zn | <sup>70</sup> Zn | <sup>71</sup> Zn           | <sup>72</sup> Zn | <sup>73</sup> Zn | <sup>74</sup> Zn | ²⁵Zn             |
|                  | <sup>52</sup> Cu | <sup>53</sup> Cu | <sup>54</sup> Cu | ⁵⁵Cu             | ⁵⁵Cu             | ⁵7Cu                 | ⁵8Cu             | ⁵⁰Cu             | ⁵⁰Cu             | 61Cu                | <sup>62</sup> Cu | <sup>63</sup> Cu | <sup>64</sup> Cu | ⁵⁵Cu             | 66Cu             | 67Cu             | 68Cu             | <sup>69</sup> Cu | <sup>70</sup> Cu           | 7-               | . 7 0            | ³Cu              | <sup>74</sup> Cu |
| <sup>50</sup> Ni | <sup>51</sup> Ni | <sup>52</sup> Ni | <sup>53</sup> Ni | <sup>54</sup> Ni | ⁵⁵Ni             | <sup>56</sup> Ni     | ⁵7Ni             | <sup>58</sup> Ni | <sup>59</sup> Ni | <sup>60</sup> Ni    | <sup>61</sup> Ni | <sup>62</sup> Ni | <sup>63</sup> Ni | <sup>64</sup> Ni | <sup>65</sup> Ni | <sup>66</sup> Ni | <sup>67</sup> Ni | <sup>68</sup> Ni | <sup>69</sup> Ni           | Z-               | .20              | <sup>2</sup> Ni  | <sup>73</sup> Ni |
| <sup>49</sup> Co | <sup>50</sup> Co | <sup>51</sup> Co | <sup>52</sup> Co | 53 <b>Co</b>     | ⁵4Co             | 55 <b>Co</b>         | <sup>56</sup> Co | 57 <b>Co</b>     | <sup>58</sup> Co | <sup>59</sup> Co    | <sup>60</sup> Co | <sup>61</sup> Co | <sup>62</sup> Co | <sup>63</sup> Co | 64Co             | <sup>65</sup> Co | 66Co             | <sup>67</sup> Co | <sup>68</sup> Co           | <sup>69</sup> Co | <sup>70</sup> Co | <sup>71</sup> Co | <sup>72</sup> Co |
| <sup>48</sup> Fe | <sup>49</sup> Fe | <sup>50</sup> Fe | ⁵¹Fe             | <sup>52</sup> Fe | <sup>53</sup> Fe | <sup>54</sup> Fe     | ⁵⁵Fe             | <sup>56</sup> Fe | ⁵7Fe             | <sup>58</sup> Fe    | <sup>59</sup> Fe | <sup>60</sup> Fe | 61Fe             | <sup>62</sup> Fe | <sup>63</sup> Fe | <sup>64</sup> Fe | ⁵Fe              | 66Fe             | ⁵7Fe                       | <sup>68</sup> Fe | ⁵⁰Fe             | <sup>70</sup> Fe | <sup>71</sup> Fe |
| ⁴7Mn             | ⁴8Mn             | ⁴⁰Mn             | ⁵⁰Mn             | ⁵¹Mn             | <sup>52</sup> Mn | <sup>₅₃</sup> Mn     | <sup>54</sup> Mn | ⁵⁵Mn             | <sup>56</sup> Mn | ⁵7Mn                | ⁵8Mn             | ⁵⁰Mn             | <sup>60</sup> Mn | ⁵¹Mn             | <sup>62</sup> Mn | <sup>63</sup> Mn | <sup>64</sup> Mn | <sup>6⁵</sup> Mn | <sup>66</sup> Mn           | 67Mn             | <sup>68</sup> Mn | <sup>69</sup> Mn |                  |
| <sup>46</sup> Cr | <sup>47</sup> Cr | <sup>48</sup> Cr | ⁴⁰Cr             | ⁵⁰Cr             | <sup>51</sup> Cr | <sup>52</sup> Cr     | <sup>53</sup> Cr | ⁵4Cr             | 55Cr             | 56Cr                | 57Cr             | <sup>58</sup> Cr | <sup>59</sup> Cr | 60Cr             | 61Cr             | <sup>62</sup> Cr | ⁰℃r              | 64Cr             | ⁵⁵Cr                       | 66CI             | 67Cr             |                  |                  |
| <sup>45</sup> V  | <sup>46</sup> V  | 47 <b>V</b>      | <sup>48</sup> V  | 49 <b>V</b>      | 50 <b>V</b>      | 51 <b>V</b>          | 52 <b>V</b>      | 53 <b>V</b>      | 54 <b>V</b>      | 55V                 | 56V              | 57 <b>V</b>      | 58V              | 59V              | 60V              | 61 <b>V</b>      | 62 V             | 63 <b>V</b>      |                            | <b></b> 5V       |                  | _                |                  |
| <sup>44</sup> Ti | ⁴⁵Ti             | <sup>46</sup> Ti | 47 <b>T</b> i    | <sup>48</sup> Ti | 49 <b>Ti</b>     | <sup>50</sup> Ti     | ⁵¹Ti             | ⁵²Ti             | ⁵³Ti             | 54TIC               | ross             | she              | 57Ti             | <sup>58</sup> Ti | <sup>59</sup> Ti | 60"              | New              | Isla             | nd c                       | of Inv           | /ersi            | on               |                  |
| <sup>43</sup> Sc | 44Sc             | ₄₅Sc             | <sup>46</sup> Sc | <sup>47</sup> Sc | <sup>48</sup> Sc | 49Sc                 | ⁵⁰Sc             | 51Sc             | 52Sc             | e                   |                  |                  |                  | 57Sc             | 58Sc             | 59 <b>5</b> 0    |                  |                  | N=2                        | 40)              |                  |                  |                  |
| ₄₂Ca             | ₄₃Ca             | 44               |                  |                  | <sup>47</sup> Ca | ⁴8Ca                 | ⁴ºCa             | ⁵⁰Ca             | ⁵¹Ca             | <sup>52</sup> Ca    | ⁵³Ca             | <sup>54</sup> Ca | ⁵⁵Ca             | ⁵⁵Ca             | <sup>57</sup> Ca |                  |                  |                  |                            | -                |                  |                  |                  |
| <sup>41</sup> K  | <sup>42</sup> K  | 4:               | Z=2              | 20               | <sup>46</sup> K  | <sup>47</sup> K      | 48K              | 49 <b>K</b>      | <sup>50</sup> K  | 51 <b>K</b>         | <sup>52</sup> K  | <sup>53</sup> K  | <sup>54</sup> K  | G                | ade              | et a             | <i>l.,</i> Pf    | RC <u>74</u>     | 4, 02<br>77                | 2130             | 2(R)             | (20)<br>(200     | 06)<br>\o\       |
| <sup>40</sup> Ar | <sup>41</sup> Ar | <sup>42</sup> Ar | <sup>43</sup> Ar | <sup>44</sup> Ar | <sup>45</sup> Ar | <sup>46</sup> Ar     | <sup>47</sup> Ar | <sup>48</sup> Ar | <sup>49</sup> Ar | <sup>50</sup> Ar    | <sup>51</sup> Ar | <sup>52</sup> Ar | <sup>53</sup> Ar | Ē                | Brow             | in et            | al.,             | PRC              | <u>//</u> ,<br><u>80</u> , | 011              | 306              | (200             | ,o,<br>)9)       |



#### Two-nucleon removal reactions

## Single-nucleon removal reactions

Removal of nucleons from a (secondary radioactive) beam at energies >80 MeV/nucleon on a light nuclear target (Be, C)

Halos: <sup>15</sup>C, <sup>19</sup>C, <sup>27</sup>P, <sup>31</sup>Ne Magic numbers: <sup>24</sup>O, <sup>42</sup>Si Exotic *R*<sub>s</sub>: <sup>23</sup>Al, <sup>23</sup>Si, <sup>27</sup>P, <sup>27</sup>S

#### Absolute cross sections

- Cross section proportional to spectroscopic strength
- Suppression of spectroscopic strengths in asymmetric systems

#### Beam directional momentum distributions

 Width → Orbital angular momentum (final state spins, evolution of shell ordering)



Hansen and Tostevin, Annu. Rev. Nucl. Part. Sci. <u>53</u>, 219 (2003) Bertulani and Hansen, PRC <u>70</u> 034609 (2004)

$$\sigma_{-1n} = \sum_{nlj} C^2 S_{nlj} \sigma_{sp}$$

#### Surface structure

- Eikonal reaction dynamics (straight line trajectory)
- Projectile internal co-ordinates assumed fixed for the duration of the (fast) interaction
- Core assumed to act as spectator during the fast interaction
- Reaction probes the projection of the (two-) nucleon wave function on the impact parameter plane
- Final state of the valence nucleons and target unobserved



#### Momentum distributions



 $K_A$  distribution characteristic of  $\kappa_1 + \kappa_2$ 

#### Two-nucleon overlap

Shell-model LS-coupled two-nucleon ove  

$$\Psi_i^{(F)}(1,2) = \langle \Phi^{(F)}(A) | \Psi_i(A+2) \rangle$$

$$= \sum_{I\mu T\alpha} C_{\alpha}^{IT} \left( T\tau T_f \tau_f | T_i \tau_i \right) \left( I\mu J_f M_f | J_i M_i \right)$$

$$[\overline{\psi_{\beta_1}(1) \otimes \psi_{\beta_2}(2)}]_{I\mu}^{T\tau}$$

$$\alpha \equiv (\beta_1, \beta_2) \qquad \beta \equiv (n\ell j)$$

#### Two-nucleon wave function



$$\begin{split} [\overline{\psi_{\beta_{1}}(1) \otimes \psi_{\beta_{2}}(2)}]_{I\mu}^{T\tau} = & D_{\alpha}\hat{j}_{1}\hat{j}_{2} \sum_{\substack{L\Lambda S\Sigma\\\lambda_{1}\lambda_{2}}} (\ell_{1}\lambda_{1}\ell_{2}\lambda_{2}|L\Lambda) (L\Lambda S\Sigma|I\mu) \hat{L}\hat{S} \,\chi_{S\Sigma}(1,2)\chi_{T\tau}(1,2) \\ \times & \left\{ \begin{array}{cc} \ell_{1} & s & j_{1} \\ \ell_{2} & s & j_{2} \\ L & S & I \end{array} \right\} [\psi_{\beta_{1}}^{\lambda_{1}}(\vec{r_{1}})\psi_{\beta_{2}}^{\lambda_{2}}(\vec{r_{2}}) - (-)^{S+T}\psi_{\beta_{1}}^{\lambda_{1}}(\vec{r_{2}})\psi_{\beta_{2}}^{\lambda_{2}}(\vec{r_{1}})] \end{split}$$

Single-nucleon wave function

$$\psi_{\beta}^{\lambda}(\vec{r}) = u_{\beta}(r)Y_{\ell\lambda}(\hat{r})$$

Absorption cross section, three-body projectile  $\sigma_{abs} = \frac{1}{\hat{J}_i^2} \sum_{M_i} \int d\vec{b} \langle \Psi_i | 1 - |S_f S_1 S_2|^2 | \Psi_i \rangle$ 

**Two-nucleon stripping cross section**  $\sigma_{str} = \frac{1}{\hat{J}_i^2} \sum_{M_i} \int d\vec{b} \langle \Psi_i || S_f |^2 (1 - |S_1|^2) (1 - |S_2|^2) |\Psi_i \rangle$ 

Also contributions to diffractive-stripping – one nucleon removed via an elastic interaction; momentum distributions expected to be very similar to pure stripping

Core assumed to be spectator – no dynamic excitation  $\langle \Phi^{(F')}(A) || S_f |^2 |\Phi^{(F)}(A) \rangle = |S_c|^2 \delta_{FF'}$ 

#### Stripping momentum distributions

Differential two-nucleon stripping cross section

$$\frac{d\sigma_{str}^{(f)}}{d\kappa_c} = \sum_{LST} \frac{d\sigma_{LST}^{(f)}}{d\kappa_c} = \sum_{T} \left( T\tau T_f \tau_f |T_i \tau_i)^2 \sum_{LSI\alpha\alpha'} \frac{2\mathfrak{C}_{\alpha LS}^{TT} \mathfrak{C}_{\alpha' LS}^{TT} D_\alpha D_{\alpha'}}{\hat{L}^2} \right)$$
$$\int d\kappa_1 \int d\kappa_2 \, \delta(\kappa_c + \kappa_1 + \kappa_2) \int d\vec{b} \, |\mathcal{S}_c(b)|^2$$
$$\sum_{\Lambda\lambda_1\lambda_2\lambda_1'\lambda_2'} \left( \ell_1 \lambda_1 \ell_2 \lambda_2 |L\Lambda) \left( \ell_1' \lambda_1' \ell_2' \lambda_2' |L\Lambda \right) \right)$$
$$\int ds_1 s_1 \int ds_2 s_2 \left[ direct - exchange \right]$$
$$direct = \left\{ \mathcal{H}_{\lambda_1\lambda_1'}(1) \mathcal{R}_{\beta_1}^{\lambda_1}(1) \mathcal{R}_{\beta_1'}^{\lambda_1'}(1)^* \mathcal{H}_{\lambda_2\lambda_2'}(2) \mathcal{R}_{\beta_2'}^{\lambda_2}(2) \mathcal{R}_{\beta_2'}^{\lambda_2'}(2)^* \right\}$$

$$exchange = (-1)^{S+T} \left\{ \mathcal{H}_{\lambda_2 \lambda_1'}(1) \mathcal{R}_{\beta_2}^{\lambda_2}(1) \mathcal{R}_{\beta_1'}^{\lambda_1'}(1)^* \mathcal{H}_{\lambda_1 \lambda_2'}(2) \mathcal{R}_{\beta_1}^{\lambda_1}(2) \mathcal{R}_{\beta_2'}^{\lambda_2'}(2)^* \right\}$$

**LS-coupled amplitude**  $\mathfrak{C}_{\alpha LS}^{IT} = \hat{j}_1 \, \hat{j}_2 \, \hat{L} \, \hat{S} \left\{ \begin{array}{ccc} \ell_1 & s & j_1 \\ \ell_2 & s & j_2 \\ L & S & I \end{array} \right\} C_{\alpha}^{IT}$ 

## Spectroscopy and structure sensitivities

## Example I: <sup>28</sup>Mg(-2p) thresholds

<sup>28</sup>Mg(-2p)



Tostevin et al., PRC <u>70</u>, 064602 (2004); Tostevin et al., PRC <u>74</u>, 064604 (2006)

#### Example I: <sup>28</sup>Mg(-2p) calculation input

Radial wave functions calculated in a Woods-Saxon, the geometry of which is fitted to Hartree-Fock rms radii and binding energies.

Hartree-Fock density used to calculate residue-target S-matrix.

Full sd-shell USD two-nucleon amplitudes  $J_f^{\pi}$  $[0d_{3/2}]^2$  $[0d_{3/2}0d_{5/2}]$  $[0d_{5/2}]^2$  $[1s_{1/2}]^2$  $E^*$  (MeV)  $[1s_{1/2}0d_{3/2}]$  $[1s_{1/2}0d_{5/2}]$  $0_{1}^{+}$ -0.304960.0  $R_{s}(2N)=0.5$  $2^{+}_{1}$ 2.02 916 0.8  $4_{1}^{+}$ 3.50 Cross section (mb) 0.6  $2^{+}_{2}$ 3.70 90 0.4 Cross sections 0.2  $J_f^\pi$ E  $R_s(2N)$ 0  $^{28}Mg \rightarrow ^{26}Ne$ 83 -0.2  $0^{+}$  $0^+$ 2+ 4+ 2+ 0.59(13) $2^+_1 \\ 4^+$ 0.28(47)0.57(9) $2^{+}_{2}$ 0.15(9) 0.33(20)0.25 0.03 0.453.700.17Incl. 2.98 1.50(10)0.50(3)

## Example I: <sup>28</sup>Mg(-2p) [0d<sub>5/2</sub>]<sup>2</sup>



#### Example I: Single/Uncorrelated



## Example I: <sup>28</sup>Mg(-2p) momentum distributions

<sup>28</sup>Mg(-2p)

Beam energy E = 82.3 A MeV

 $S_p = 16.8 \text{ MeV}$  $S_n = 8.5 \text{ MeV}$ 

 $\frac{\text{Broadening in thick}}{\frac{\text{reaction target}}{9}\text{Be 375 mg/cm}^2}$  $\Delta K_A = 0.29 \text{ GeV/c}$ 

5000 (a) 4000 2000 Sounds Ο φ δ ₫ 1000 2500 (b) 2000 1500 1000 500 80 (C) Counts 60 40 20 (d) 1000 Counts 100 Å 10 10.2 9.4 9.6 9.8 10 10.4 K<sub>₄</sub> (GeV/c)

Bazin *et al.*, PRL <u>91</u> 012501 (2003) Simpson *et al.*, PRL <u>102</u>, 132502 (2009)

#### Example 2: <sup>22</sup>Mg(-2n) thresholds

<sup>22</sup>Mg(-2n)



Tostevin et al., PRC <u>70</u>, 064602 (2004); Tostevin et al., PRC <u>74</u>, 064604 (2006)

#### Example 2: <sup>22</sup>Mg(-2n) structure input

#### USD two-nucleon amplitudes

| $J_f^{\pi}$ | $[0d_{5/2}]^2$ | $[0d_{3/2}]^2$ | $[1s_{1/2}]^2$ | $[0d_{3/2}][0d_{5/2}]$ | $[0d_{5/2}][1s_{1/2}]$ | $[0d_{3/2}][1s_{1/2}]$ |  |
|-------------|----------------|----------------|----------------|------------------------|------------------------|------------------------|--|
| $0^+$       | 0.8029         | 0.2546         | 0.3784         | —                      | _                      | —                      |  |
| $2^{+}$     | 0.4566         | 0.1010         | _              | -0.1937                | 0.5244                 | -0.1983                |  |
| $4^{+}$     | -0.0153        | _              | —              | -0.0175                | _                      | —                      |  |

#### $N=10 \rightarrow N=8$

Last two neutrons in the sd-shell removed

Must necessarily be coupled to the final-state spin in the <sup>22</sup>Mg ground state

What could this tell use about seniority-2 components of the <sup>22</sup>Mg ground state?



14**F** 

13**O** 

12**O** 

## Example 2: <sup>22</sup>Mg(-2n) momentum distributions



Gade et al., PRC <u>76</u>, 024317 (2007)

## Spatial correlations

#### Joint position probability

## Cross section in terms of joint position probability $\sigma_{\rm str}^{(f)} = \int d\vec{b} \int d\vec{s}_1 \int d\vec{s}_2 \, \mathcal{P}_f(\vec{s}_1, \vec{s}_2) \mathcal{O}_{\rm str}(c, 1, 2),$

Joint position probability

$$\mathcal{P}_{f}(\vec{s}_{1},\vec{s}_{2}) = \frac{1}{\hat{J}_{i}^{2}} \sum_{M_{i}M_{f}} \int dz_{1} \int dz_{2} \left\langle \left| \Psi_{J_{i}M_{i}}^{(F)} \right|^{2} \right\rangle_{\mathrm{sp}}.$$

Reaction probes JPP – two-nucleon overlap projected onto the impact parameter plane

#### Spatial correlations I

Joint position probability projected on to the impact parameter plane, displayed as the azimuthal angular separation of nucleons 1 and 2 for fixed b.

![](_page_24_Figure_2.jpeg)

Tostevin, J. Phys. Conf. Ser. <u>49</u>, 21 (2006)

#### Spatial correlations II

Determines the probability for angular separation, reaction geometry determines how  $\omega$  is probed

$$\Gamma^{L}_{\ell_{1}\ell_{2}\ell'_{1}\ell'_{2}}(\omega) = (-1)^{L} \frac{\hat{\ell}_{1}\hat{\ell}'_{1}\hat{\ell}_{2}\hat{\ell}'_{2}\hat{L}^{2}}{(4\pi)^{2}} \sum_{k} W(\ell_{1}\ell_{2}\ell'_{1}\ell'_{2};Lk) \times (-1)^{k} \left(\ell_{1}0\ell'_{1}0|k0\right) \left(\ell_{2}0\ell'_{2}0|k0\right) P_{k}(\cos\omega)$$

Evenness with respect to  $\cos \omega = 0$  depends on evenness of k, itself dependent on evenness of  $l_1$  and  $l_1'$  ( $l_2$  and  $l_2'$ )

- 1. Structure sensitivity of momentum distributions?
- 2. Large basis calculations
- 3. Cross-shell excitations

Catara *et al.*, PRC <u>29</u>, 1091 (1984) Pinkston, PRC <u>29</u>, 1123 (1984) Tischler *et al.*, PRC <u>58</u>, 2591 (1998)

 $(\mathbf{I})$ 

 $\vec{r_1}$ 

#### Example: $^{208}Pb(-2p) \rightarrow ^{206}Hg(J_f=3^+)$

![](_page_26_Figure_1.jpeg)

## $^{26}$ Si(-2n) $\rightarrow$ $^{24}$ Si separation thresholds

<sup>26</sup>Si(-2n)

![](_page_27_Figure_2.jpeg)

Yoneda et al., PRC <u>74</u>, 021303(R) (2006)

#### <sup>26</sup>Si(-2n): Cross section results

#### <u>Results</u>

![](_page_28_Figure_2.jpeg)

#### Shell model (sd-shell, USD) two-nucleon amplitudes

| State                   | [0d <sub>5/2</sub> ] <sup>2</sup> | [0d <sub>5/2</sub> ,0d <sub>3/2</sub> ] | [0d <sub>3/2</sub> ] <sup>2</sup> | [1s <sub>1/2</sub> ,0d <sub>3/2</sub> ] | [1s <sub>1/2</sub> ,0d <sub>5/2</sub> ] |
|-------------------------|-----------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------|
| 2 <sup>+</sup> (First)  | -0.70074                          | 0.43499                                 | 0.00594                           | -0.00188                                | -0.02781                                |
| 2 <sup>+</sup> (Second) | -0.38021                          | -0.12354                                | -0.12945                          | -0.15876                                | -0.58292                                |
| 4+ (First)              | 1.57469                           | 0.41519                                 | -                                 | -                                       | -                                       |

#### Yoneda et al., PRC <u>74</u>, 021303(R) (2006)

#### Structure Sensitivity

![](_page_29_Figure_1.jpeg)

A. Gade et al., NSCL experiment 10002 (approved)

### N=Z nuclei: knockout of a proton and neutron

#### Motivation...

![](_page_31_Figure_1.jpeg)

**Fig. 3.** The average fraction of nucleons in the various initial-state configurations of <sup>12</sup>C.

#### <sup>12</sup>C(<sup>12</sup>C,<sup>10</sup>Z)X and <sup>12</sup>C(<sup>16</sup>O,<sup>14</sup>Z)X

Bevatron fragmentation experiments from 1975 show very large np removal cross sections (<sup>12</sup>C target)

| Beam                         | рр        | nn       | np       |
|------------------------------|-----------|----------|----------|
| <sup>12</sup> C (2100 A MeV) | 5.81(29)  | 4.11(22) | 35.1(34) |
| <sup>12</sup> C (1050 A MeV) | 6.49(48)  | 4.44(25) | 27.9(22) |
| <sup>12</sup> C (250 A MeV)  | 5.88(970) | 5.33(81) | 47.5(24) |
| <sup>16</sup> O (2100 A MeV) | 4.71(31)  | 1.67(12) | 41.8(33) |

Simplest  $[0p_{3/2}]^8$  structure suggests  $\sigma_{NN}/\sigma_{np} \approx 6/16 \approx 2.7$  for <sup>12</sup>C(-2N)

Lindstrom *et al.*, LBNL Report 3650 (1975) Greiner *et al.*, PRL <u>35</u>, 152 (1975) Kidd *et al.*, <u>37</u>, 2613 PRC (1988)

Subedi et al., Science 320, 1476 (2008)

## <sup>12</sup>C(-np): direct vs. indirect

#### **Particle Separation Thresholds**

![](_page_32_Figure_2.jpeg)

## <sup>12</sup>C beam LBL Bevatron results (1975)

Fragmentation of <sup>16</sup>O and <sup>12</sup>C projectiles studies at LBNL; beam energies 2.1 GeV/nucleon; cross sections and momentum distribution widths published (though averaged over targets)

Oxbash p-shell shell model structure input using WBP (and PJT interactions)

#### <sup>12</sup>C projectile, WBP interaction

| Residue               | <sup>10</sup> C |        | <sup>10</sup> B | е      | <sup>10</sup> B |        |  |  |
|-----------------------|-----------------|--------|-----------------|--------|-----------------|--------|--|--|
|                       | exp.            | theory | exp.            | theory | exp.            | theory |  |  |
| σ <sub>-2N</sub> (mb) | 4.11±0.22       | 5.04   | 5.81±0.29       | 6.52   | 35.1±3.4        | 19.02  |  |  |
| Width (MeV/c)*        | 121±6           | 120    | 129±4           | 127    | 134±3           | 132    |  |  |

\*Target averaged

Lindstrom *et al.*, LBNL Report 3650 (1975) Greiner *et al.*, PRL <u>35</u>, 152 (1975)

## $^{12}C(-2p) \rightarrow {}^{10}Be$ momentum distribution

#### <sup>10</sup>Be final state inclusive

![](_page_34_Figure_2.jpeg)

## np-knockout: <sup>12</sup>C

- Cross section underestimated: T=1 removal apparently well described (<sup>10</sup>C, <sup>10</sup>Be), so deficiency with T=1 states?
- Some interaction sensitivity for T=0 states, weaker for T=1 states
- Distinct pattern of momentum distributions widths
  - Sensitivity to underlying structure
  - Indications of indirection removal
- Calculations using NCSM amplitudes are underway – can these large basis (N<sub>max</sub>=6) account for the cross section deficit?

![](_page_35_Figure_7.jpeg)

Simpson and Tostevin, PRC <u>83</u>, 014605 (2011)

## <sup>16</sup>O(-np): direct vs. indirect

#### Nucleon separation thresholds

Possible indirect contributions to removal, (though little predicted by SM)

![](_page_36_Figure_3.jpeg)

<u>Oxbash shell model input</u>: spspdpf, wbt Truncate to p-shell (0 ħ $\omega$ ) (also 0+2 ħ $\omega$ , 0+2+4 ħ $\omega$ ) Harmonic oscillator wave functions used, ħ $\omega$  = 45A<sup>-1/3</sup> – 25A<sup>-2/3</sup>

 $^{16}O(-2n) \rightarrow ^{14}O$ 

#### **Preliminary Results**

| <sup>14</sup> O     | Experiment | 0ħω (WBT) | 2ħω (WBT) | 4ħω (WBT) |
|---------------------|------------|-----------|-----------|-----------|
| σ (mb)              | 1.67±0.12  | 1.36      | 1.36      | 1.39      |
| Width (MeV/c)       | 99±6       | 99.6      | 96.5      | 94.4      |
| Σ(TNA) <sup>2</sup> | -          | 1.00      | 0.90      | 0.83      |

- Good agreement for (very narrow) momentum distribution
- Oħω theory <u>underestimates</u> experiment in contrast to exotic sd-shell cases and <sup>12</sup>C(-2N)
  - Sizes of core and radial wave functions?
  - Centre of mass corrections to TNA?
- How important are cross-shell excitations?
  - Overlap smaller, cross-shell components enhance spatial correlations, maintaining cross section

#### Along the *N*=*Z* line?

#### <sup>36</sup>Ar(-2N) thesholds

![](_page_38_Figure_2.jpeg)

# Rapid structural change: applications and further work

## Structure changes in exotic nuclei

|                  |                  |                  |                  |                  |                  | 47 <b>Co</b>     | <sup>48</sup> Co | <sup>49</sup> Co | <sup>50</sup> Co | <sup>51</sup> Co | 52 <b>Co</b>     | <sup>53</sup> Co | <sup>54</sup> Co | 55Co             | 56Co             | <sup>57</sup> Co | <sup>58</sup> Co | <sup>59</sup> Co | <sup>60</sup> Co | <sup>61</sup> Co | <sup>62</sup> Co | <sup>63</sup> Co | <sup>64</sup> Co | <sup>65</sup> Co    | <sup>66</sup> Co | 67 <b>Cc</b>     | <sup>68</sup> Co | <sup>69</sup> Co | <sup>70</sup> Co | <sup>71</sup> Co | 72 <b>C</b> C    |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                  |                  |                  |                  |                  | <sup>45</sup> Fe | <sup>46</sup> Fe | <sup>47</sup> Fe | <sup>48</sup> Fe | <sup>49</sup> Fe | <sup>50</sup> Fe | <sup>51</sup> Fe | <sup>52</sup> Fe | <sup>53</sup> Fe | <sup>54</sup> Fe | <sup>55</sup> Fe | <sup>56</sup> Fe | ⁵7Fe             | <sup>58</sup> Fe | <sup>59</sup> Fe | <sup>60</sup> Fe | 61Fe             | <sup>62</sup> Fe | <sup>63</sup> Fe | <sup>64</sup> Fe    | ⁵₅Fe             | 66Fe             | <sup>67</sup> Fe | <sup>68</sup> Fe | <sup>69</sup> Fe | <sup>70</sup> Fe | <sup>71</sup> Fe |
|                  |                  |                  |                  |                  | ⁴⁴Mn             | ⁴⁵Mn             | ⁴⁵Mn             | 47Mn             | ⁴8Mn             | ⁴⁰Mn             | ⁵⁰Mn             | ⁵¹Mn             | ⁵²Mn             | ⁵³Mn             | ⁵⁴Mn             | ⁵⁵Mn             | 56Mn             | ⁵7Mn             | <sup>58</sup> Mn | <sup>59</sup> Mn | <sup>60</sup> Mn | <sup>61</sup> Mn | <sup>62</sup> Mn | <sup>63</sup> Mn    | <sup>64</sup> Mn | <sup>65</sup> Mr | 66Mn             | <sup>67</sup> Mn | <sup>68</sup> Mn | <sup>69</sup> Mn |                  |
|                  |                  |                  |                  | <sup>42</sup> Cr | <sup>43</sup> Cr | 44Cr             | <sup>45</sup> Cr | <sup>46</sup> Cr | <sup>47</sup> Cr | <sup>48</sup> Cr | <sup>49</sup> Cr | ⁵⁰Cr             | 51Cr             | <sup>52</sup> Cr | <sup>53</sup> Cr | <sup>54</sup> Cr | ⁵⁵Cr             | 56Cr             | 57Cr             | 58Cr             | <sup>59</sup> Cr | 60Cr             | 61Cr             | 62Cr                | <sup>63</sup> Cr | <sup>64</sup> Cr | <sup>65</sup> Cr | 66Cr             | 67Cr             |                  | 1                |
|                  |                  |                  | 40 <b>V</b>      | 41 <b>V</b>      | 42 <b>V</b>      | 43 <b>V</b>      | 44V              | <sup>45</sup> V  | <sup>46</sup> V  | 47 <b>V</b>      | <sup>48</sup> V  | 49 <b>V</b>      | 50V              | 51 <b>V</b>      | 52V              | 53V              | 54V              | 55V              | 56V              | 57 <b>V</b>      | 58V              | 59 <b>V</b>      | <sup>60</sup> V  | 61 <b>V</b>         | 62V              | 63V              | 64V              | 65V              |                  | I                | 1                |
|                  |                  | <sup>38</sup> Ti | <sup>39</sup> Ti | ⁴⁰Ti             | ⁴¹Ti             | 42Ti             | <sup>43</sup> Ti | 44Ti             | ⁴⁵Ti             | <sup>46</sup> Ti | ⁴7 <b>Ti</b>     | <sup>48</sup> Ti | <sup>49</sup> Ti | <sup>50</sup> Ti | ⁵¹Ti             | 52 <b>Ti</b>     | 53 <b>Ti</b>     | <sup>54</sup> Ti | <sup>55</sup> Ti | <sup>56</sup> Ti | ⁵7Ti             | <sup>58</sup> Ti | <sup>59</sup> Ti | 60Ti                | i                | •≃ <b>⊺</b> i    | ∞Ti              |                  |                  |                  | J.               |
|                  | <sup>36</sup> Sc | <sup>37</sup> Sc | <sup>38</sup> Sc | <sup>39</sup> Sc | ₄₀Sc             | 41Sc             | 42Sc             | <sup>43</sup> Sc | 44Sc             | <sup>45</sup> Sc | <sup>46</sup> Sc | 47 <b>Sc</b>     | <sup>48</sup> Sc | 49Sc             | 50Sc             | 51 <b>Sc</b>     | <sup>52</sup> Sc | 53Sc             | 54Sc             | 55 <b>Sc</b>     | 56Sc             | 57 <b>Sc</b>     | 58Sc             | 59Sc                | <sup>60</sup> Sc |                  |                  |                  |                  |                  |                  |
| <sup>34</sup> Ca | <sup>35</sup> Ca | <sup>36</sup> Ca | <sup>37</sup> Ca | <sup>38</sup> Ca | ₃₃Са             | ⁴ºCa             | ⁴¹Ca             | ₄₂Ca             | ₄₃Ca             | 44Ca             | <sup>45</sup> Ca | ⁴⁵Ca             | ₄7Ca             | ⁴®Ca             | ⁴ºCa             | ⁵⁰Ca             | ⁵¹Ca             | 52Ca             | 53Ca             | ⁵4Ca             | 55Ca             | <sup>56</sup> Ca | ⁵7Ca             | Ν                   | e١               | N                | isl              | an               | d                | of               | 2                |
| <sup>33</sup> K  | <sup>34</sup> K  | <sup>35</sup> K  | <sup>36</sup> K  | <sup>37</sup> K  | <sup>38</sup> K  | зяК              | 40K              | 41K              | <sup>42</sup> K  | 43K              | 44K              | <sup>45</sup> K  | 46K              | 47K              | 48K              | <sup>49</sup> K  | <sup>50</sup> K  | 51 <b>K</b>      | <sup>52</sup> K  | <sup>53</sup> K  | <sup>54</sup> K  | <sup>55</sup> K  |                  | in                  |                  |                  |                  | n '              | C                |                  |                  |
| <sup>32</sup> Ar | <sup>33</sup> Ar | <sup>34</sup> Ar | <sup>35</sup> Ar | <sup>36</sup> Ar | <sup>37</sup> Ar | <sup>38</sup> Ar | <sup>39</sup> Ar | ⁴⁰Ar             | <sup>41</sup> Ar | <sup>42</sup> Ar | <sup>43</sup> Ar | <sup>44</sup> Ar | <sup>45</sup> Ar | 46 <b>Ar</b>     | <sup>47</sup> Ar | <sup>48</sup> Ar | <sup>49</sup> Ar | <sup>50</sup> Ar | <sup>51</sup> Ar | <sup>52</sup> Ar | <sup>53</sup> Ar |                  |                  | 11                  |                  | 213              | SIC              | )[]              |                  |                  |                  |
| <sup>31</sup> Cl | 32 <b>CI</b>     | 33CI             | <sup>34</sup> Cl | <sup>35</sup> Cl | <sup>36</sup> CI | <sup>37</sup> Cl | 38CI             | <sup>39</sup> Cl | ⁴⁰CI             | <sup>41</sup> Cl | 42 <b>CI</b>     | 43 <b>CI</b>     | ₄₄CI             | 45 <b>C I</b>    | ⁴⁵CI             | 47 <b>CI</b>     | 48CI             | 49 <b>CI</b>     | 50Cl             | 51CI             |                  |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |
| <sup>30</sup> S  | <sup>31</sup> S  | <sup>32</sup> S  | 33S              | <sup>34</sup> S  | 35 <b>S</b>      | <sup>36</sup> S  | 37 <b>S</b>      | <sup>38</sup> S  | <sup>39</sup> S  | 40 <b>S</b>      | <sup>41</sup> S  | 42 <b>S</b>      | 43 <b>S</b>      | 44S              | ⁴⁵S              | <sup>46</sup> S  | 47 <b>S</b>      | 48 <b>S</b>      | <sup>49</sup> S  |                  |                  |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |
| <sup>29</sup> P  | 30 <b>P</b>      | 31 <b>P</b>      | <sup>32</sup> P  | 33 <b>P</b>      | <sup>34</sup> P  | 35 <b>P</b>      | <sup>36</sup> P  | 37 <b>P</b>      | <sup>38</sup> P  | <sup>39</sup> P  | <sup>40</sup> P  | 41 <b>P</b>      | 42F              | 43 <b>P</b>      | ⁴P               | 45 <b>P</b>      | <sup>46</sup> P  |                  |                  |                  |                  |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |
| <sup>28</sup> Si | <sup>29</sup> Si | <sup>30</sup> Si | <sup>31</sup> Si | <sup>32</sup> Si | <sup>33</sup> Si | <sup>34</sup> Si | <sup>35</sup> Si | <sup>36</sup> Si | <sup>37</sup> Si | <sup>38</sup> Si | <sup>39</sup> Si | 40Si             | 41 <b>S</b>      | <sup>42</sup> Si | ³Si              | 44Si             | E,               |                  | l                | Hi a             | h                |                  | <b>Γ</b> Ν       | ı_                  | าต               | )                |                  |                  |                  |                  |                  |
| 27 <b>AI</b>     | <sup>28</sup> AI | <sup>29</sup> AI | <sup>30</sup> AI | 31 <b>AI</b>     | 32AI             | 33 <b>AI</b>     | <sup>34</sup> AI | <sup>35</sup> AI | <sup>36</sup> AI | 374              | 38 <b>A</b> I    | <sup>39</sup> AI | 40 <b>A</b>      | 41 <b>AI</b>     | 2AI              |                  | E.               | vO               | IU               | uc               | ווכ              | 0                |                  | <b>V</b> — <b>V</b> | ZC               | )                |                  |                  |                  |                  |                  |
| <sup>26</sup> Mg | <sup>27</sup> Mg | <sup>28</sup> Mg | <sup>29</sup> Mg | <sup>30</sup> Mg | <sup>31</sup> Mg | <sup>32</sup> Mg | <sup>33</sup> Mg | <sup>34</sup> Mg | <sup>35</sup> Mg | <sup>36</sup> Mg | ³7Mç             | <sup>38</sup> Мg | <sup>39</sup> Mg | ⁴⁰Mg             |                  |                  |                  |                  |                  |                  |                  |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |
| <sup>25</sup> Na | <sup>26</sup> Na | <sup>27</sup> Na | <sup>28</sup> Na | <sup>29</sup> Na | <sup>30</sup> Na | <sup>31</sup> Na | <sup>32</sup> Na | <sup>33</sup> Na | <sup>34</sup> Na | <sup>35</sup> Na | <sup>36</sup> N8 | <sup>37</sup> Na |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |
| <sup>24</sup> Ne | <sup>25</sup> Ne | <sup>26</sup> Ne | <sup>27</sup> Ne | <sup>28</sup> Ne | <sup>29</sup> Ne | <sup>30</sup> Ne | <sup>31</sup> Ne | <sup>32</sup> Ne | <sup>33</sup> Ne | <sup>34</sup> Ne | I                |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |
| 23 <b>F</b>      | <sup>24</sup> F  | 25 <b>F</b>      | <sup>26</sup> F  | <sup>27</sup> F  | <sup>28</sup> F  | <sup>29</sup> F  | 30F              | 31F              |                  |                  | -                |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |
| 220              | 230              | <sup>24</sup> O  | <sup>25</sup> O  | <sup>26</sup> O  | 270              | <sup>28</sup> O  |                  |                  |                  |                  |                  | <b>.</b> .       |                  |                  | •                |                  |                  |                  |                  |                  |                  |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |
| <sup>21</sup> N  | 22 <b>N</b>      | <sup>23</sup> N  | <sup>24</sup> N  | 25 <b>N</b>      |                  |                  |                  | S                | ar               | ١d               | 0                | t li             | nv               | er               | Sİ               | on               |                  |                  |                  |                  |                  |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |
| 20 <b>C</b>      | <sup>21</sup> C  | 22 <b>C</b>      |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |

#### Island of Inversion: ${}^{38}Si(-2p) \rightarrow {}^{36}Mg$

<sup>38</sup>Si(-2 **3**6

Ratio of experimental to pure  $0 \hbar \omega$  theoretical cross sections gives indications of fraction of  $2 \hbar \omega$  components, agreeing with MCSM calculations

![](_page_41_Figure_3.jpeg)

|      | Exp. (mb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 ħω Theor         | y (mb)     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|
|      | 0.10±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.28               |            |
| 150  | <b>O</b> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |            |
| 100- | 2+ J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | _          |
| 50-  | The second secon |                    | -          |
| 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |
|      | 13.6 13.<br>p <sub>//</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .8 14.0<br>(MeV/c) | 14.2       |
|      | Gade et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al., PRC 77, 04    | 4306 (2008 |

#### Spherical model does not track structural changes

Counts

<sup>22</sup>Mg(-2n) vs. <sup>38</sup>Si(-2p)

![](_page_42_Figure_1.jpeg)

## New island of inversion? N=40

#### Two-proton removal

- Cross section for <sup>66</sup>Fe(-2p) strongly suppressed relative <sup>σ<sub>i</sub></sup> to spherical theory and <sup>68</sup>Ni (-2p)
- Symptomatic of reduced structure overlap
  - Rapid structure changes
  - Onset of deformation
- Inelastic scattering measurements indicate increasing deformation

![](_page_43_Figure_7.jpeg)

#### Inelastic scattering

![](_page_43_Figure_9.jpeg)

Gade et al., PRC <u>81</u>, 051304(R) (2010)

Adrich et al., PRC 77, 054306 (2008)

#### N=28 shell closure: ${}^{46}$ Ar(-2p) $\rightarrow {}^{44}$ S

<sup>46</sup>Ar(-2p)

Structure down the N=28 shell closure  $0_1^+ v[2p2h]$  $2_1^+ v[2p2h]$  $0_2^+ v[0p0h]$ 

 $4_1^+ v[1p1h]$ 

![](_page_44_Figure_4.jpeg)

| $E_{\text{level}}$ (keV) | $J^{\pi}$           | $E_{\gamma}$ (keV) | $J_{	ext{final}}^{\pi}$       | $\sigma$ (mb) | $\sigma_{\text{theory}} (\text{mb})$ |
|--------------------------|---------------------|--------------------|-------------------------------|---------------|--------------------------------------|
| 0                        | $0^+$               |                    |                               |               | 0.334                                |
| 1319(7)                  | $2^{+}_{1}$         | 1319(7)            | $0_{1}^{+}$                   | 0.014(3)      | 0.028                                |
| 1357(15)                 | $0^{+}_{2}$         |                    | -                             |               | 0.163                                |
| 2150(11)*                | $(\bar{2}_{2}^{+})$ | 2150(11)           | $0_{1}^{+*}$                  | 0.004(1)      | 0.076                                |
| 2268(8)                  | $2^{+}_{3}$         | 949(5)             | $2_{1}^{+}$                   | 0.022(4)      | 0.082                                |
| 2447(9)                  | $4_{1}^{+}$         | 1128(6)            | $2_{1}^{+}$                   | 0.019(4)      | 0.032                                |
| 3248(12)                 | $(2_4^+)$           | 1891(10)           | $0^{+}_{2}*$                  | 0.011(3)      | 0.033                                |
|                          | ·                   | 1929(7)            | $2\overline{\stackrel{-}{1}}$ |               |                                      |

![](_page_44_Figure_6.jpeg)

#### Santiago-Gonzalez et al., PRC <u>83</u> 061305 (2011)

N=28 shell closure:  ${}^{46}Ar(-2p) \rightarrow {}^{44}S$ 

## <u>Residue momentum</u> <u>distributions</u>

![](_page_45_Figure_2.jpeg)

YKIS talk by Dario Vretenar:  $\beta(^{34}Ar) = -0.19$  $\beta(^{44}S) = 0.34$ 

![](_page_45_Figure_4.jpeg)

#### BUT <sup>44</sup>S and other N=28 isotones are strongly deformed

#### Deformation

![](_page_46_Figure_1.jpeg)

Sakharuk and Zelavinsky, PRC 61, 014609 (1999)

Batham et al., PRC <u>71</u> 064608 (2005)

## Conclusions

### Conclusions

- Two-nucleon removal offers an efficient route to detailed spectroscopic information on low-lying states in highly exotic nuclei
- Momentum distributions offer detailed tests of structure models
  - NSCL proposal on <sup>26</sup>Si(-2n)
- Odd-odd systems more complicated (mixed /), but may yet exhibit structure sensitivity
- KO from N=Z nuclei are intriguing: new final-state exclusive measurements are required to provide robust tests in stable nuclei
  - RIKEN proposal on <sup>12</sup>C(-np)
- Rapid structural changes:
  - New (deformed) structure input (PSM, BCS+Nilsson)
  - Deformed reaction dynamics descriptions
  - Dynamic core excitation

J. A. Tostevin, P. H. Regan, Zs. Podolyak, S. J. Steer

D. Bazin, B. A. Brown, A. Gade

J. Lee

P. Navratil

![](_page_49_Picture_5.jpeg)

UNIVERSITY OF

![](_page_49_Picture_6.jpeg)

UK STFC Grants EP/D003628 and ST/F012012 UK EPSRC Grant EP/P503892/1