

Spectroscopy and correlations probed via two-nucleon knockout reactions

DCEN Workshop 25th October 2011

Edward Simpson University of Surrey

Outline

- Introduction
- Two-nucleon removal reactions
- How can we learn about structure?
 - Final state spins from momentum distributions
 - Two-nucleon spatial correlations
 - Tests of underlying structure
- N=Z nuclei
 - Stable nuclei
 - np-correlations?
- Regions of changing structure
- Conclusions

							0			⁶⁷ Br	⁶⁸ Br	⁶⁹ Br	⁷⁰ Br	⁷¹ Br	⁷² Br	⁷³ Br	⁷⁴ Br	⁷⁵ Br	⁷⁶ Br	77Br	⁷⁸ Br	⁷⁹ Br	⁸⁰ Br
						=2	ð		⁶⁵ Se	⁶⁶ Se	67Se	⁶⁸ Se	⁶⁹ Se	⁷⁰ Se	⁷¹ Se	⁷² Se	⁷³ Se	⁷⁴ Se	⁷⁵ Se	⁷⁶ Se	⁷⁷ Se	⁷⁸ Se	⁷⁹ Se
					⁶⁰ As	⁶¹ As	⁶² As	⁶³ As	⁶⁴ As	⁶⁵ As	66As	⁶⁷ As	⁶⁸ As	⁶⁹ As	⁷⁰ As	71 As	72 As	⁷³ As	⁷⁴ As	⁷⁵ As	⁷⁶ As	77 As	⁷⁸ As
				⁵⁸ Ge	⁵⁹ Ge	60Ge	⁵¹Ge	⁶² Ge	63Ge	64Ge	65Ge	⁶⁶ Ge	67Ge	⁶⁸ Ge	⁶⁹ Ge	™Ge	⁷¹ Ge	72Ge	⁷³ Ge	^{7₄} Ge	⁷⁵ Ge	⁷⁶ Ge	77Ge
			56Ga	⁵7Ga	58Ga	59 <mark>1</mark> 32	⁶⁰ Ga	sosp	⁶² Ga	63G.	⁶⁴ Ga	65Ga	66Ga	67Ga	⁶⁸ Ga	⁶⁹ Ga	™Ga	71Ga	72Ga	⁷³ Ga	⁷⁴ Ga	⁷⁵ Ga	⁷⁶ Ga
		⁵⁴Zn	⁵⁵Zn	⁵⁵Zn	⁵⁷ Zn	58 (n	sy	mme	etry	62 <mark>Z</mark> 1	⁶³ Zn	⁵⁴Zn	⁵⁵Zn	66Zn	67Zn	68Zn	⁶⁹ Zn	⁷⁰ Zn	⁷¹ Zn	⁷² Zn	⁷³ Zn	⁷⁴ Zn	²⁵Zn
	⁵² Cu	⁵³ Cu	⁵⁴ Cu	⁵⁵Cu	⁵⁵Cu	⁵7Cu	⁵8Cu	⁵⁰Cu	⁵⁰Cu	61Cu	⁶² Cu	⁶³ Cu	⁶⁴ Cu	⁵⁵Cu	66Cu	67Cu	68Cu	⁶⁹ Cu	⁷⁰ Cu	7-	. 7 0	³Cu	⁷⁴ Cu
⁵⁰ Ni	⁵¹ Ni	⁵² Ni	⁵³ Ni	⁵⁴ Ni	⁵⁵Ni	⁵⁶ Ni	⁵7Ni	⁵⁸ Ni	⁵⁹ Ni	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	⁶³ Ni	⁶⁴ Ni	⁶⁵ Ni	⁶⁶ Ni	⁶⁷ Ni	⁶⁸ Ni	⁶⁹ Ni	Z-	.20	² Ni	⁷³ Ni
⁴⁹ Co	⁵⁰ Co	⁵¹ Co	⁵² Co	53 Co	⁵4Co	55 Co	⁵⁶ Co	57 Co	⁵⁸ Co	⁵⁹ Co	⁶⁰ Co	⁶¹ Co	⁶² Co	⁶³ Co	64Co	⁶⁵ Co	66Co	⁶⁷ Co	⁶⁸ Co	⁶⁹ Co	⁷⁰ Co	⁷¹ Co	⁷² Co
⁴⁸ Fe	⁴⁹ Fe	⁵⁰ Fe	⁵¹Fe	⁵² Fe	⁵³ Fe	⁵⁴ Fe	⁵⁵Fe	⁵⁶ Fe	⁵7Fe	⁵⁸ Fe	⁵⁹ Fe	⁶⁰ Fe	61Fe	⁶² Fe	⁶³ Fe	⁶⁴ Fe	⁵Fe	66Fe	⁵7Fe	⁶⁸ Fe	⁵⁰Fe	⁷⁰ Fe	⁷¹ Fe
⁴7Mn	⁴8Mn	⁴⁰Mn	⁵⁰Mn	⁵¹Mn	⁵² Mn	^{₅₃} Mn	⁵⁴ Mn	⁵⁵Mn	⁵⁶ Mn	⁵7Mn	⁵8Mn	⁵⁰Mn	⁶⁰ Mn	⁵¹Mn	⁶² Mn	⁶³ Mn	⁶⁴ Mn	^{6⁵} Mn	⁶⁶ Mn	67Mn	⁶⁸ Mn	⁶⁹ Mn	
⁴⁶ Cr	⁴⁷ Cr	⁴⁸ Cr	⁴⁰Cr	⁵⁰Cr	⁵¹ Cr	⁵² Cr	⁵³ Cr	⁵4Cr	55Cr	56Cr	57Cr	⁵⁸ Cr	⁵⁹ Cr	60Cr	61Cr	⁶² Cr	⁰℃r	64Cr	⁵⁵Cr	66CI	67Cr		
⁴⁵ V	⁴⁶ V	47 V	⁴⁸ V	49 V	50 V	51 V	52 V	53 V	54 V	55V	56V	57 V	58V	59V	60V	61 V	62 V	63 V		 5V		_	
⁴⁴ Ti	⁴⁵Ti	⁴⁶ Ti	47 T i	⁴⁸ Ti	49 Ti	⁵⁰ Ti	⁵¹Ti	⁵²Ti	⁵³Ti	54TIC	ross	she	57Ti	⁵⁸ Ti	⁵⁹ Ti	60"	New	Isla	nd c	of Inv	/ersi	on	
⁴³ Sc	44Sc	₄₅Sc	⁴⁶ Sc	⁴⁷ Sc	⁴⁸ Sc	49Sc	⁵⁰Sc	51Sc	52Sc	e				57Sc	58Sc	59 5 0			N=2	40)			
₄₂Ca	₄₃Ca	44			⁴⁷ Ca	⁴8Ca	⁴ºCa	⁵⁰Ca	⁵¹Ca	⁵² Ca	⁵³Ca	⁵⁴ Ca	⁵⁵Ca	⁵⁵Ca	⁵⁷ Ca					-			
⁴¹ K	⁴² K	4:	Z=2	20	⁴⁶ K	⁴⁷ K	48K	49 K	⁵⁰ K	51 K	⁵² K	⁵³ K	⁵⁴ K	G	ade	et a	<i>l.,</i> Pf	RC <u>74</u>	4, 02 77	2130	2(R)	(20) (200	06) \o\
⁴⁰ Ar	⁴¹ Ar	⁴² Ar	⁴³ Ar	⁴⁴ Ar	⁴⁵ Ar	⁴⁶ Ar	⁴⁷ Ar	⁴⁸ Ar	⁴⁹ Ar	⁵⁰ Ar	⁵¹ Ar	⁵² Ar	⁵³ Ar	Ē	Brow	in et	al.,	PRC	<u>//</u> , <u>80</u> ,	011	306	(200	,o,)9)

Two-nucleon removal reactions

Single-nucleon removal reactions

Removal of nucleons from a (secondary radioactive) beam at energies >80 MeV/nucleon on a light nuclear target (Be, C)

Halos: ¹⁵C, ¹⁹C, ²⁷P, ³¹Ne Magic numbers: ²⁴O, ⁴²Si Exotic *R*_s: ²³Al, ²³Si, ²⁷P, ²⁷S

Absolute cross sections

- Cross section proportional to spectroscopic strength
- Suppression of spectroscopic strengths in asymmetric systems

Beam directional momentum distributions

 Width → Orbital angular momentum (final state spins, evolution of shell ordering)

Hansen and Tostevin, Annu. Rev. Nucl. Part. Sci. <u>53</u>, 219 (2003) Bertulani and Hansen, PRC <u>70</u> 034609 (2004)

$$\sigma_{-1n} = \sum_{nlj} C^2 S_{nlj} \sigma_{sp}$$

Surface structure

- Eikonal reaction dynamics (straight line trajectory)
- Projectile internal co-ordinates assumed fixed for the duration of the (fast) interaction
- Core assumed to act as spectator during the fast interaction
- Reaction probes the projection of the (two-) nucleon wave function on the impact parameter plane
- Final state of the valence nucleons and target unobserved

Momentum distributions

 K_A distribution characteristic of $\kappa_1 + \kappa_2$

Two-nucleon overlap

Shell-model LS-coupled two-nucleon ove

$$\Psi_i^{(F)}(1,2) = \langle \Phi^{(F)}(A) | \Psi_i(A+2) \rangle$$

$$= \sum_{I\mu T\alpha} C_{\alpha}^{IT} \left(T\tau T_f \tau_f | T_i \tau_i \right) \left(I\mu J_f M_f | J_i M_i \right)$$

$$[\overline{\psi_{\beta_1}(1) \otimes \psi_{\beta_2}(2)}]_{I\mu}^{T\tau}$$

$$\alpha \equiv (\beta_1, \beta_2) \qquad \beta \equiv (n\ell j)$$

Two-nucleon wave function

$$\begin{split} [\overline{\psi_{\beta_{1}}(1) \otimes \psi_{\beta_{2}}(2)}]_{I\mu}^{T\tau} = & D_{\alpha}\hat{j}_{1}\hat{j}_{2} \sum_{\substack{L\Lambda S\Sigma\\\lambda_{1}\lambda_{2}}} (\ell_{1}\lambda_{1}\ell_{2}\lambda_{2}|L\Lambda) (L\Lambda S\Sigma|I\mu) \hat{L}\hat{S} \,\chi_{S\Sigma}(1,2)\chi_{T\tau}(1,2) \\ \times & \left\{ \begin{array}{cc} \ell_{1} & s & j_{1} \\ \ell_{2} & s & j_{2} \\ L & S & I \end{array} \right\} [\psi_{\beta_{1}}^{\lambda_{1}}(\vec{r_{1}})\psi_{\beta_{2}}^{\lambda_{2}}(\vec{r_{2}}) - (-)^{S+T}\psi_{\beta_{1}}^{\lambda_{1}}(\vec{r_{2}})\psi_{\beta_{2}}^{\lambda_{2}}(\vec{r_{1}})] \end{split}$$

Single-nucleon wave function

$$\psi_{\beta}^{\lambda}(\vec{r}) = u_{\beta}(r)Y_{\ell\lambda}(\hat{r})$$

Absorption cross section, three-body projectile $\sigma_{abs} = \frac{1}{\hat{J}_i^2} \sum_{M_i} \int d\vec{b} \langle \Psi_i | 1 - |S_f S_1 S_2|^2 | \Psi_i \rangle$

Two-nucleon stripping cross section $\sigma_{str} = \frac{1}{\hat{J}_i^2} \sum_{M_i} \int d\vec{b} \langle \Psi_i || S_f |^2 (1 - |S_1|^2) (1 - |S_2|^2) |\Psi_i \rangle$

Also contributions to diffractive-stripping – one nucleon removed via an elastic interaction; momentum distributions expected to be very similar to pure stripping

Core assumed to be spectator – no dynamic excitation $\langle \Phi^{(F')}(A) || S_f |^2 |\Phi^{(F)}(A) \rangle = |S_c|^2 \delta_{FF'}$

Stripping momentum distributions

Differential two-nucleon stripping cross section

$$\frac{d\sigma_{str}^{(f)}}{d\kappa_c} = \sum_{LST} \frac{d\sigma_{LST}^{(f)}}{d\kappa_c} = \sum_{T} \left(T\tau T_f \tau_f |T_i \tau_i)^2 \sum_{LSI\alpha\alpha'} \frac{2\mathfrak{C}_{\alpha LS}^{TT} \mathfrak{C}_{\alpha' LS}^{TT} D_\alpha D_{\alpha'}}{\hat{L}^2} \right)$$
$$\int d\kappa_1 \int d\kappa_2 \, \delta(\kappa_c + \kappa_1 + \kappa_2) \int d\vec{b} \, |\mathcal{S}_c(b)|^2$$
$$\sum_{\Lambda\lambda_1\lambda_2\lambda_1'\lambda_2'} \left(\ell_1 \lambda_1 \ell_2 \lambda_2 |L\Lambda) \left(\ell_1' \lambda_1' \ell_2' \lambda_2' |L\Lambda \right) \right)$$
$$\int ds_1 s_1 \int ds_2 s_2 \left[direct - exchange \right]$$
$$direct = \left\{ \mathcal{H}_{\lambda_1\lambda_1'}(1) \mathcal{R}_{\beta_1}^{\lambda_1}(1) \mathcal{R}_{\beta_1'}^{\lambda_1'}(1)^* \mathcal{H}_{\lambda_2\lambda_2'}(2) \mathcal{R}_{\beta_2'}^{\lambda_2}(2) \mathcal{R}_{\beta_2'}^{\lambda_2'}(2)^* \right\}$$

$$exchange = (-1)^{S+T} \left\{ \mathcal{H}_{\lambda_2 \lambda_1'}(1) \mathcal{R}_{\beta_2}^{\lambda_2}(1) \mathcal{R}_{\beta_1'}^{\lambda_1'}(1)^* \mathcal{H}_{\lambda_1 \lambda_2'}(2) \mathcal{R}_{\beta_1}^{\lambda_1}(2) \mathcal{R}_{\beta_2'}^{\lambda_2'}(2)^* \right\}$$

LS-coupled amplitude $\mathfrak{C}_{\alpha LS}^{IT} = \hat{j}_1 \, \hat{j}_2 \, \hat{L} \, \hat{S} \left\{ \begin{array}{ccc} \ell_1 & s & j_1 \\ \ell_2 & s & j_2 \\ L & S & I \end{array} \right\} C_{\alpha}^{IT}$

Spectroscopy and structure sensitivities

Example I: ²⁸Mg(-2p) thresholds

²⁸Mg(-2p)

Tostevin et al., PRC <u>70</u>, 064602 (2004); Tostevin et al., PRC <u>74</u>, 064604 (2006)

Example I: ²⁸Mg(-2p) calculation input

Radial wave functions calculated in a Woods-Saxon, the geometry of which is fitted to Hartree-Fock rms radii and binding energies.

Hartree-Fock density used to calculate residue-target S-matrix.

Full sd-shell USD two-nucleon amplitudes J_f^{π} $[0d_{3/2}]^2$ $[0d_{3/2}0d_{5/2}]$ $[0d_{5/2}]^2$ $[1s_{1/2}]^2$ E^* (MeV) $[1s_{1/2}0d_{3/2}]$ $[1s_{1/2}0d_{5/2}]$ 0_{1}^{+} -0.304960.0 $R_{s}(2N)=0.5$ 2^{+}_{1} 2.02 916 0.8 4_{1}^{+} 3.50 Cross section (mb) 0.6 2^{+}_{2} 3.70 90 0.4 Cross sections 0.2 J_f^π E $R_s(2N)$ 0 $^{28}Mg \rightarrow ^{26}Ne$ 83 -0.2 0^{+} 0^+ 2+ 4+ 2+ 0.59(13) $2^+_1 \\ 4^+$ 0.28(47)0.57(9) 2^{+}_{2} 0.15(9) 0.33(20)0.25 0.03 0.453.700.17Incl. 2.98 1.50(10)0.50(3)

Example I: ²⁸Mg(-2p) [0d_{5/2}]²

Example I: Single/Uncorrelated

Example I: ²⁸Mg(-2p) momentum distributions

²⁸Mg(-2p)

Beam energy E = 82.3 A MeV

 $S_p = 16.8 \text{ MeV}$ $S_n = 8.5 \text{ MeV}$

 $\frac{\text{Broadening in thick}}{\frac{\text{reaction target}}{9}\text{Be 375 mg/cm}^2}$ $\Delta K_A = 0.29 \text{ GeV/c}$

5000 (a) 4000 2000 Sounds Ο φ δ ₫ 1000 2500 (b) 2000 1500 1000 500 80 (C) Counts 60 40 20 (d) 1000 Counts 100 Å 10 10.2 9.4 9.6 9.8 10 10.4 K_₄ (GeV/c)

Bazin *et al.*, PRL <u>91</u> 012501 (2003) Simpson *et al.*, PRL <u>102</u>, 132502 (2009)

Example 2: ²²Mg(-2n) thresholds

²²Mg(-2n)

Tostevin et al., PRC <u>70</u>, 064602 (2004); Tostevin et al., PRC <u>74</u>, 064604 (2006)

Example 2: ²²Mg(-2n) structure input

USD two-nucleon amplitudes

J_f^{π}	$[0d_{5/2}]^2$	$[0d_{3/2}]^2$	$[1s_{1/2}]^2$	$[0d_{3/2}][0d_{5/2}]$	$[0d_{5/2}][1s_{1/2}]$	$[0d_{3/2}][1s_{1/2}]$	
0^+	0.8029	0.2546	0.3784	—	_	—	
2^{+}	0.4566	0.1010	_	-0.1937	0.5244	-0.1983	
4^{+}	-0.0153	_	—	-0.0175	_	—	

$N=10 \rightarrow N=8$

Last two neutrons in the sd-shell removed

Must necessarily be coupled to the final-state spin in the ²²Mg ground state

What could this tell use about seniority-2 components of the ²²Mg ground state?

14**F**

13**O**

12**O**

Example 2: ²²Mg(-2n) momentum distributions

Gade et al., PRC <u>76</u>, 024317 (2007)

Spatial correlations

Joint position probability

Cross section in terms of joint position probability $\sigma_{\rm str}^{(f)} = \int d\vec{b} \int d\vec{s}_1 \int d\vec{s}_2 \, \mathcal{P}_f(\vec{s}_1, \vec{s}_2) \mathcal{O}_{\rm str}(c, 1, 2),$

Joint position probability

$$\mathcal{P}_{f}(\vec{s}_{1},\vec{s}_{2}) = \frac{1}{\hat{J}_{i}^{2}} \sum_{M_{i}M_{f}} \int dz_{1} \int dz_{2} \left\langle \left| \Psi_{J_{i}M_{i}}^{(F)} \right|^{2} \right\rangle_{\mathrm{sp}}.$$

Reaction probes JPP – two-nucleon overlap projected onto the impact parameter plane

Spatial correlations I

Joint position probability projected on to the impact parameter plane, displayed as the azimuthal angular separation of nucleons 1 and 2 for fixed b.

Tostevin, J. Phys. Conf. Ser. <u>49</u>, 21 (2006)

Spatial correlations II

Determines the probability for angular separation, reaction geometry determines how ω is probed

$$\Gamma^{L}_{\ell_{1}\ell_{2}\ell'_{1}\ell'_{2}}(\omega) = (-1)^{L} \frac{\hat{\ell}_{1}\hat{\ell}'_{1}\hat{\ell}_{2}\hat{\ell}'_{2}\hat{L}^{2}}{(4\pi)^{2}} \sum_{k} W(\ell_{1}\ell_{2}\ell'_{1}\ell'_{2};Lk) \times (-1)^{k} \left(\ell_{1}0\ell'_{1}0|k0\right) \left(\ell_{2}0\ell'_{2}0|k0\right) P_{k}(\cos\omega)$$

Evenness with respect to $\cos \omega = 0$ depends on evenness of k, itself dependent on evenness of l_1 and l_1' (l_2 and l_2')

- 1. Structure sensitivity of momentum distributions?
- 2. Large basis calculations
- 3. Cross-shell excitations

Catara *et al.*, PRC <u>29</u>, 1091 (1984) Pinkston, PRC <u>29</u>, 1123 (1984) Tischler *et al.*, PRC <u>58</u>, 2591 (1998)

 (\mathbf{I})

 $\vec{r_1}$

Example: $^{208}Pb(-2p) \rightarrow ^{206}Hg(J_f=3^+)$

26 Si(-2n) \rightarrow 24 Si separation thresholds

²⁶Si(-2n)

Yoneda et al., PRC <u>74</u>, 021303(R) (2006)

²⁶Si(-2n): Cross section results

<u>Results</u>

Shell model (sd-shell, USD) two-nucleon amplitudes

State	[0d _{5/2}] ²	[0d _{5/2} ,0d _{3/2}]	[0d _{3/2}] ²	[1s _{1/2} ,0d _{3/2}]	[1s _{1/2} ,0d _{5/2}]
2 ⁺ (First)	-0.70074	0.43499	0.00594	-0.00188	-0.02781
2 ⁺ (Second)	-0.38021	-0.12354	-0.12945	-0.15876	-0.58292
4+ (First)	1.57469	0.41519	-	-	-

Yoneda et al., PRC <u>74</u>, 021303(R) (2006)

Structure Sensitivity

A. Gade et al., NSCL experiment 10002 (approved)

N=Z nuclei: knockout of a proton and neutron

Motivation...

Fig. 3. The average fraction of nucleons in the various initial-state configurations of ¹²C.

¹²C(¹²C,¹⁰Z)X and ¹²C(¹⁶O,¹⁴Z)X

Bevatron fragmentation experiments from 1975 show very large np removal cross sections (¹²C target)

Beam	рр	nn	np
¹² C (2100 A MeV)	5.81(29)	4.11(22)	35.1(34)
¹² C (1050 A MeV)	6.49(48)	4.44(25)	27.9(22)
¹² C (250 A MeV)	5.88(970)	5.33(81)	47.5(24)
¹⁶ O (2100 A MeV)	4.71(31)	1.67(12)	41.8(33)

Simplest $[0p_{3/2}]^8$ structure suggests $\sigma_{NN}/\sigma_{np} \approx 6/16 \approx 2.7$ for ¹²C(-2N)

Lindstrom *et al.*, LBNL Report 3650 (1975) Greiner *et al.*, PRL <u>35</u>, 152 (1975) Kidd *et al.*, <u>37</u>, 2613 PRC (1988)

Subedi et al., Science 320, 1476 (2008)

¹²C(-np): direct vs. indirect

Particle Separation Thresholds

¹²C beam LBL Bevatron results (1975)

Fragmentation of ¹⁶O and ¹²C projectiles studies at LBNL; beam energies 2.1 GeV/nucleon; cross sections and momentum distribution widths published (though averaged over targets)

Oxbash p-shell shell model structure input using WBP (and PJT interactions)

¹²C projectile, WBP interaction

Residue	¹⁰ C		¹⁰ B	е	¹⁰ B			
	exp.	theory	exp.	theory	exp.	theory		
σ _{-2N} (mb)	4.11±0.22	5.04	5.81±0.29	6.52	35.1±3.4	19.02		
Width (MeV/c)*	121±6	120	129±4	127	134±3	132		

*Target averaged

Lindstrom *et al.*, LBNL Report 3650 (1975) Greiner *et al.*, PRL <u>35</u>, 152 (1975)

$^{12}C(-2p) \rightarrow {}^{10}Be$ momentum distribution

¹⁰Be final state inclusive

np-knockout: ¹²C

- Cross section underestimated: T=1 removal apparently well described (¹⁰C, ¹⁰Be), so deficiency with T=1 states?
- Some interaction sensitivity for T=0 states, weaker for T=1 states
- Distinct pattern of momentum distributions widths
 - Sensitivity to underlying structure
 - Indications of indirection removal
- Calculations using NCSM amplitudes are underway – can these large basis (N_{max}=6) account for the cross section deficit?

Simpson and Tostevin, PRC <u>83</u>, 014605 (2011)

¹⁶O(-np): direct vs. indirect

Nucleon separation thresholds

Possible indirect contributions to removal, (though little predicted by SM)

<u>Oxbash shell model input</u>: spspdpf, wbt Truncate to p-shell (0 ħ ω) (also 0+2 ħ ω , 0+2+4 ħ ω) Harmonic oscillator wave functions used, ħ ω = 45A^{-1/3} – 25A^{-2/3}

 $^{16}O(-2n) \rightarrow ^{14}O$

Preliminary Results

¹⁴ O	Experiment	0ħω (WBT)	2ħω (WBT)	4ħω (WBT)
σ (mb)	1.67±0.12	1.36	1.36	1.39
Width (MeV/c)	99±6	99.6	96.5	94.4
Σ(TNA) ²	-	1.00	0.90	0.83

- Good agreement for (very narrow) momentum distribution
- Oħω theory <u>underestimates</u> experiment in contrast to exotic sd-shell cases and ¹²C(-2N)
 - Sizes of core and radial wave functions?
 - Centre of mass corrections to TNA?
- How important are cross-shell excitations?
 - Overlap smaller, cross-shell components enhance spatial correlations, maintaining cross section

Along the *N*=*Z* line?

³⁶Ar(-2N) thesholds

Rapid structural change: applications and further work

Structure changes in exotic nuclei

						47 Co	⁴⁸ Co	⁴⁹ Co	⁵⁰ Co	⁵¹ Co	52 Co	⁵³ Co	⁵⁴ Co	55Co	56Co	⁵⁷ Co	⁵⁸ Co	⁵⁹ Co	⁶⁰ Co	⁶¹ Co	⁶² Co	⁶³ Co	⁶⁴ Co	⁶⁵ Co	⁶⁶ Co	67 Cc	⁶⁸ Co	⁶⁹ Co	⁷⁰ Co	⁷¹ Co	72 C C
					⁴⁵ Fe	⁴⁶ Fe	⁴⁷ Fe	⁴⁸ Fe	⁴⁹ Fe	⁵⁰ Fe	⁵¹ Fe	⁵² Fe	⁵³ Fe	⁵⁴ Fe	⁵⁵ Fe	⁵⁶ Fe	⁵7Fe	⁵⁸ Fe	⁵⁹ Fe	⁶⁰ Fe	61Fe	⁶² Fe	⁶³ Fe	⁶⁴ Fe	⁵₅Fe	66Fe	⁶⁷ Fe	⁶⁸ Fe	⁶⁹ Fe	⁷⁰ Fe	⁷¹ Fe
					⁴⁴Mn	⁴⁵Mn	⁴⁵Mn	47Mn	⁴8Mn	⁴⁰Mn	⁵⁰Mn	⁵¹Mn	⁵²Mn	⁵³Mn	⁵⁴Mn	⁵⁵Mn	56Mn	⁵7Mn	⁵⁸ Mn	⁵⁹ Mn	⁶⁰ Mn	⁶¹ Mn	⁶² Mn	⁶³ Mn	⁶⁴ Mn	⁶⁵ Mr	66Mn	⁶⁷ Mn	⁶⁸ Mn	⁶⁹ Mn	
				⁴² Cr	⁴³ Cr	44Cr	⁴⁵ Cr	⁴⁶ Cr	⁴⁷ Cr	⁴⁸ Cr	⁴⁹ Cr	⁵⁰Cr	51Cr	⁵² Cr	⁵³ Cr	⁵⁴ Cr	⁵⁵Cr	56Cr	57Cr	58Cr	⁵⁹ Cr	60Cr	61Cr	62Cr	⁶³ Cr	⁶⁴ Cr	⁶⁵ Cr	66Cr	67Cr		1
			40 V	41 V	42 V	43 V	44V	⁴⁵ V	⁴⁶ V	47 V	⁴⁸ V	49 V	50V	51 V	52V	53V	54V	55V	56V	57 V	58V	59 V	⁶⁰ V	61 V	62V	63V	64V	65V		I	1
		³⁸ Ti	³⁹ Ti	⁴⁰Ti	⁴¹Ti	42Ti	⁴³ Ti	44Ti	⁴⁵Ti	⁴⁶ Ti	⁴7 Ti	⁴⁸ Ti	⁴⁹ Ti	⁵⁰ Ti	⁵¹Ti	52 Ti	53 Ti	⁵⁴ Ti	⁵⁵ Ti	⁵⁶ Ti	⁵7Ti	⁵⁸ Ti	⁵⁹ Ti	60Ti	i	•≃ ⊺ i	∞Ti				J.
	³⁶ Sc	³⁷ Sc	³⁸ Sc	³⁹ Sc	₄₀Sc	41Sc	42Sc	⁴³ Sc	44Sc	⁴⁵ Sc	⁴⁶ Sc	47 Sc	⁴⁸ Sc	49Sc	50Sc	51 Sc	⁵² Sc	53Sc	54Sc	55 Sc	56Sc	57 Sc	58Sc	59Sc	⁶⁰ Sc						
³⁴ Ca	³⁵ Ca	³⁶ Ca	³⁷ Ca	³⁸ Ca	₃₃Са	⁴ºCa	⁴¹Ca	₄₂Ca	₄₃Ca	44Ca	⁴⁵ Ca	⁴⁵Ca	₄7Ca	⁴®Ca	⁴ºCa	⁵⁰Ca	⁵¹Ca	52Ca	53Ca	⁵4Ca	55Ca	⁵⁶ Ca	⁵7Ca	Ν	e١	N	isl	an	d	of	2
³³ K	³⁴ K	³⁵ K	³⁶ K	³⁷ K	³⁸ K	зяК	40K	41K	⁴² K	43K	44K	⁴⁵ K	46K	47K	48K	⁴⁹ K	⁵⁰ K	51 K	⁵² K	⁵³ K	⁵⁴ K	⁵⁵ K		in				n '	C		
³² Ar	³³ Ar	³⁴ Ar	³⁵ Ar	³⁶ Ar	³⁷ Ar	³⁸ Ar	³⁹ Ar	⁴⁰Ar	⁴¹ Ar	⁴² Ar	⁴³ Ar	⁴⁴ Ar	⁴⁵ Ar	46 Ar	⁴⁷ Ar	⁴⁸ Ar	⁴⁹ Ar	⁵⁰ Ar	⁵¹ Ar	⁵² Ar	⁵³ Ar			11		213	SIC)[]			
³¹ Cl	32 CI	33CI	³⁴ Cl	³⁵ Cl	³⁶ CI	³⁷ Cl	38CI	³⁹ Cl	⁴⁰CI	⁴¹ Cl	42 CI	43 CI	₄₄CI	45 C I	⁴⁵CI	47 CI	48CI	49 CI	50Cl	51CI											
³⁰ S	³¹ S	³² S	33S	³⁴ S	35 S	³⁶ S	37 S	³⁸ S	³⁹ S	40 S	⁴¹ S	42 S	43 S	44S	⁴⁵S	⁴⁶ S	47 S	48 S	⁴⁹ S												
²⁹ P	30 P	31 P	³² P	33 P	³⁴ P	35 P	³⁶ P	37 P	³⁸ P	³⁹ P	⁴⁰ P	41 P	42F	43 P	⁴P	45 P	⁴⁶ P														
²⁸ Si	²⁹ Si	³⁰ Si	³¹ Si	³² Si	³³ Si	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si	³⁸ Si	³⁹ Si	40Si	41 S	⁴² Si	³Si	44Si	E,		l	Hi a	h		Γ Ν	ı_	าต)					
27 AI	²⁸ AI	²⁹ AI	³⁰ AI	31 AI	32AI	33 AI	³⁴ AI	³⁵ AI	³⁶ AI	374	38 A I	³⁹ AI	40 A	41 AI	2AI		E.	vO	IU	uc	ווכ	0		V — V	ZC)					
²⁶ Mg	²⁷ Mg	²⁸ Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³7Mç	³⁸ Мg	³⁹ Mg	⁴⁰Mg																	
²⁵ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na	³⁵ Na	³⁶ N8	³⁷ Na																			
²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne	³³ Ne	³⁴ Ne	I																				
23 F	²⁴ F	25 F	²⁶ F	²⁷ F	²⁸ F	²⁹ F	30F	31F			-																				
220	230	²⁴ O	²⁵ O	²⁶ O	270	²⁸ O						. .			•																
²¹ N	22 N	²³ N	²⁴ N	25 N				S	ar	١d	0	t li	nv	er	Sİ	on															
20 C	²¹ C	22 C																													

Island of Inversion: ${}^{38}Si(-2p) \rightarrow {}^{36}Mg$

³⁸Si(-2 **3**6

Ratio of experimental to pure $0 \hbar \omega$ theoretical cross sections gives indications of fraction of $2 \hbar \omega$ components, agreeing with MCSM calculations

	Exp. (mb)	0 ħω Theor	y (mb)
	0.10±0.01	0.28	
150	O +		
100-	2+ J		_
50-	The second secon		-
0			
	13.6 13. p _{//}	.8 14.0 (MeV/c)	14.2
	Gade et	al., PRC 77, 04	4306 (2008

Spherical model does not track structural changes

Counts

²²Mg(-2n) vs. ³⁸Si(-2p)

New island of inversion? N=40

Two-proton removal

- Cross section for ⁶⁶Fe(-2p) strongly suppressed relative ^{σ_i} to spherical theory and ⁶⁸Ni (-2p)
- Symptomatic of reduced structure overlap
 - Rapid structure changes
 - Onset of deformation
- Inelastic scattering measurements indicate increasing deformation

Inelastic scattering

Gade et al., PRC <u>81</u>, 051304(R) (2010)

Adrich et al., PRC 77, 054306 (2008)

N=28 shell closure: 46 Ar(-2p) $\rightarrow {}^{44}$ S

⁴⁶Ar(-2p)

Structure down the N=28 shell closure $0_1^+ v[2p2h]$ $2_1^+ v[2p2h]$ $0_2^+ v[0p0h]$

 $4_1^+ v[1p1h]$

E_{level} (keV)	J^{π}	E_{γ} (keV)	$J_{ ext{final}}^{\pi}$	σ (mb)	$\sigma_{\text{theory}} (\text{mb})$
0	0^+				0.334
1319(7)	2^{+}_{1}	1319(7)	0_{1}^{+}	0.014(3)	0.028
1357(15)	0^{+}_{2}		-		0.163
2150(11)*	$(\bar{2}_{2}^{+})$	2150(11)	0_{1}^{+*}	0.004(1)	0.076
2268(8)	2^{+}_{3}	949(5)	2_{1}^{+}	0.022(4)	0.082
2447(9)	4_{1}^{+}	1128(6)	2_{1}^{+}	0.019(4)	0.032
3248(12)	(2_4^+)	1891(10)	$0^{+}_{2}*$	0.011(3)	0.033
	·	1929(7)	$2\overline{\stackrel{-}{1}}$		

Santiago-Gonzalez et al., PRC <u>83</u> 061305 (2011)

N=28 shell closure: ${}^{46}Ar(-2p) \rightarrow {}^{44}S$

<u>Residue momentum</u> <u>distributions</u>

YKIS talk by Dario Vretenar: $\beta(^{34}Ar) = -0.19$ $\beta(^{44}S) = 0.34$

BUT ⁴⁴S and other N=28 isotones are strongly deformed

Deformation

Sakharuk and Zelavinsky, PRC 61, 014609 (1999)

Batham et al., PRC <u>71</u> 064608 (2005)

Conclusions

Conclusions

- Two-nucleon removal offers an efficient route to detailed spectroscopic information on low-lying states in highly exotic nuclei
- Momentum distributions offer detailed tests of structure models
 - NSCL proposal on ²⁶Si(-2n)
- Odd-odd systems more complicated (mixed /), but may yet exhibit structure sensitivity
- KO from N=Z nuclei are intriguing: new final-state exclusive measurements are required to provide robust tests in stable nuclei
 - RIKEN proposal on ¹²C(-np)
- Rapid structural changes:
 - New (deformed) structure input (PSM, BCS+Nilsson)
 - Deformed reaction dynamics descriptions
 - Dynamic core excitation

J. A. Tostevin, P. H. Regan, Zs. Podolyak, S. J. Steer

D. Bazin, B. A. Brown, A. Gade

J. Lee

P. Navratil

UNIVERSITY OF

UK STFC Grants EP/D003628 and ST/F012012 UK EPSRC Grant EP/P503892/1