Macroscopic collision dynamics by timedependent energy density functional theory

Kouhei Washiyama (Université Libre de Bruxelles) Denis Lacroix (GANIL), Sakir Ayik (Tennessee Tech. Univ)

Mean-field dynamics

- Nucleus-nucleus potential
- Energy dissipation

Figure taken from Simenel, Avez, Int.J.Mod.Phys.E17(2008)31

DCEN2011, Oct. 28, 2011, Kyoto

Plan of the talk

- Introduction
- Macroscopic and microscopic nuclear reaction
- Time-dependent energy density functional (TDHF)
- Nucleus-nucleus potential, energy dissipation
- Fluctuation around mean field: Width of mass distribution
- Stochastic mean-field approach
- Summary

Introduction: macroscopic, microscopic

(Energy < 10 MeV/A)

□ Macroscopic nuclear reaction

- Collective degrees of freedom
- Coupled-channels, CDCC
- Nucleus-nucleus potential

Nucleus-nucleus potential

- Phenomenological potential (Woods-Saxon)
- Double folding potential with realistic nuclear density

Introduction: macroscopic, microscopic

(Energy < 10 MeV/A)

□ Macroscopic nuclear reaction

- Collective degrees of freedom
- Coupled-channels, CDCC
- Nucleus-nucleus potential
- Nucleus-nucleus potential
 - Phenomenological potential (Woods-Saxon)
 - Double folding potential with realistic nuclear density

■ Microscopic nuclear reaction: TDHF

- Microscopic degrees of freedom (single-particle wave functions in TDHF)
- No collective degrees of freedom is explicitly considered

Introduction: TDHF

- Nuclear structure and dynamics in a unified framework
- Dynamical effect (vibration, rotation, transfer, ...) automatically included
- Single-particle motion: quantum. Collective motion: classical
- Full Skyrme forces including spin-orbit and time-odd terms
- No fitted parameter for dynamics

Predictive power of TDHF

3D-TDHF code by P. Bonche (Kim, Otsuka, Bonche, J.Phys.G23(1997)1267)

- $i\hbar\dot{\varphi}_{\alpha} = \hat{h}\varphi_{\alpha}$, h: self-consistent mean field
- Three dimensional box (mesh size: 0.8 fm, time step: 0.45 fm/c)
- Skyrme energy density functional (SLy4d)

Introduction: macroscopic, microscopic

Nucleus-nucleus potential and

Microscopic potentials based on EDF

Frozen density approximation Denisov, Norenberg, EPJA15(2002)375

- Energy density functional of projectile and target
- Density is frozen to ground-state density at each R

 $V^{FD}(R) = \mathcal{E}[\rho_{P+T}](R) - \mathcal{E}[\rho_T] - \mathcal{E}[\rho_P]$

 ${\mathcal E}$: Skyrme energy density functional

Density-constrained TDHF

Umar, Oberacker, PRC74(2006)021601

- Density from TDHF trajectory
- Minimization of energy: constraint HF on this density

$$\hat{H} \to \hat{H} + \int d^3 r \lambda(r) \hat{\rho}(r)$$

$$V(R) \rightarrow E_{DC}(R) - E_{A_1} - E_{A_2}$$

From TDHF to macroscopic dynamics (fusion)

Central collision

•Two trajectories (R₁, P₁), (R₁₁, P₁₁) at two slightly different energies (E_1, E_{11}) $dP_{\tau}/dt = dP_{\tau\tau}/dt$

$$\Rightarrow \gamma(R) = -\frac{dT_{I}/dt - dT_{II}/dt}{dR_{I}/dt - dR_{II}/dt}$$

R

(R₁₁,P₁₁)

V(R)

From TDHF to macroscopic dynamics (fusion)

Energy dependence of potential Mapping dPdRRtime dtdt56 ${}^{40}\text{Ca}+{}^{40}\text{Ca}$ 54 V(R)[MeV] 52 $E_{c.m.} = 55 \text{ MeV}$ $E_{c.m.} = 57 \text{ MeV}$ $E_{c.m.} = 90 \text{ MeV}$ $E_{c.m.} = 100 \text{ MeV}$ 50 48 Frozen density 46 9 9.5 10.5 11.5 10 11 R[fm]

Washiyama, Lacroix, PRC78(2008)024610

Energy dependence of potential

Nuclear friction: energy dissipation

R: relative distance*P*: momentum*V*: potentialγ: friction coefficient

 $E_{cm} = P^2/2\mu + V$

Nuclear friction: energy dissipation

R: relative distance*P*: momentum*V*: potentialγ: friction coefficient

 $E_{cm} = P^2/2\mu + V + E_{dissipation}$

Nuclear friction: energy dissipation *R*: relative distance Mapping *P*: momentum dV(R)dPdRV: potential dtdRdt γ : friction coefficient $E_{cm} = P^2/2\mu + V + E_{dissipation}$ ${}^{16}O + {}^{16}O$ **E**_{cm} 2 16 O + 40 Ca **Kinetic energy** $\gamma(R)/\mu\,[10^{21}{ m s}^{-1}]$ 40 Ca + 40 Ca ${}^{40}Ca + {}^{48}Ca$ [V] 10 $^{64}Zn + ^{196}Pt$ Dissipated (macro-model) energy Potential energy 0 0 0.95 1 1.05 1.1 1.15 8 6 10 12 R/R_B

R [fm]

Washiyama, Lacroix, Ayik, PRC79(2009)024609

Energy dependence of nuclear friction

Washiyama, Lacroix, Ayik, PRC79(2009)024609

Energy dependence of nuclear friction

Washiyama, Lacroix, Ayik, PRC79(2009)024609

Nuclear friction: dissipated energy $^{16}O + ^{16}O, E_{cm} = 35 \text{ MeV}$ 6 Dissipated energy [MeV] Edis F* 4 R_B 2 10 ${}^{40}Ca + {}^{40}Ca$ 0 8 8 10 9 11 7 R[fm] R_B E [Me] 6 E E_{diss} 4 2 0 10.5 9.5 10 11.5 12 11 R [fm]

Summary

- Nucleus-nucleus potentials are systematically extracted from TDHF.
- Dynamical reduction of potential energy close to the Coulomb barrier energy
- Extracted potentials agree with exp. data

- One-body energy dissipation are extracted from microscopic theory
- Universal property of extracted friction
- Energy dependence of friction

 $R/R_{\rm B}$

Mean-field (one-body) fluctuations

Mean-field dynamics

- good description for average evolution
 fluctuations are underestimated
- Bonche et al., PRC13 (1976)
- Flocard et al., PRC17 (1978)
- Simenel et al., PRL86 (2001)
- Nakatsukasa et al., PRC71 (2005)
- Umar et al., PRC73 (2006)
- Maruhn et al., PRC74 (2006)

Mean-field (one-body) fluctuations

Mean-field dynamics

good description for average evolutionfluctuations are underestimated

- Bonche et al., PRC13 (1976)
- Flocard et al., PRC17 (1978)
- Simenel et al., PRL86 (2001)
- Nakatsukasa et al., PRC71 (2005)
- Umar et al., PRC73 (2006)
- Maruhn et al., PRC74 (2006)

Long standing problem

- Davies et al., PRL41 (1978)
- Negele, Rev.Mod.Phys.54 (1982)
- Abe et al., Phys.Rep.275 (1996)
- Lacroix et al., Prog.Part.Nucl.Phys. (2004)

(semi-)Classical models

- Feldmeier, Rep.Prog.Phys.50(1987)915
- Chomaz et al., Phys.Rep. 389(2004)263

Beyond mean field with a stochastic method

Stochastic Mean Field

Application to fusion reaction

$$\frac{d}{dt}P = -\frac{d}{dR}U(R) - \gamma(R)\dot{R}$$

Application to fusion reaction

$$\frac{d}{dt}P = -\frac{d}{dR}U(R) - \gamma(R)\dot{R}$$

Stochastic mean-field

$$\frac{d}{dt}P^{\lambda} = -\frac{d}{dR^{\lambda}}U(R^{\lambda}) - \gamma(R^{\lambda})\dot{R}^{\lambda} + \xi_{P}^{\lambda}(t)$$

cf. Brownian motion

Application to fusion reaction

Mean-field
$$\frac{d}{dt}P = -\frac{d}{dR}U(R) - \gamma(R)\dot{R}$$

Stochastic mean-field

$$\frac{d}{dt}P^{\lambda} = -\frac{d}{dR^{\lambda}}U(R^{\lambda}) - \gamma(R^{\lambda})\dot{R}^{\lambda} + \xi_{P}^{\lambda}(t)$$

cf. Brownian motion

$$\overline{\xi_P^{\lambda}(t)\xi_P^{\lambda}(t')} = 2\delta(t-t')D_{PP}(R)$$

Ayik, Washiyama, Lacroix, PRC79, 054906(2009)

Mean-field (one-body) fluctuations

Mean-field dynamics

good description for average evolutionfluctuations are underestimated

- Bonche et al., PRC13 (1976)
- Flocard et al., PRC17 (1978)
- Simenel et al., PRL86 (2001)
- Nakatsukasa et al., PRC71 (2005)
- Umar et al., PRC73 (2006)
- Maruhn et al., PRC74 (2006)

Long standing problem

- Davies et al., PRL41 (1978)
- Negele, Rev.Mod.Phys.54 (1982)
- Abe et al., Phys.Rep.275 (1996)
- Lacroix et al., Prog.Part.Nucl.Phys. (2004)

(semi-)Classical models

- Feldmeier, Rep.Prog.Phys.50(1987)915
- Chomaz et al., Phys.Rep. 389(2004)263

Beyond mean field with a stochastic method

Analysis based on phenomenological classical model

 $\sigma_{AA}^2(t) \simeq N_{\rm exc}(t) \begin{array}{l} (N_{\rm exc}: {\rm the \ number \ of} \\ {\rm exchanged \ nucleons}) \end{array}$

Freiesleben, Kratz, Phys.Rep. 106(1984)1

•Analysis based on phenomenological classical model

$\sigma_{AA}^2(t) \simeq N_{\rm exc}(t)$	(<i>N</i> _{exc} : the number of exchanged nucleons)
	exertainged fracteorie;

Freiesleben, Kratz, Phys.Rep. 106(1984)1

V _B =53.4 MeV	⁴⁰ Ca+ ⁴⁰ Ca	E _{c.m.} (MeV)	σ^2_{TDHF}	N _{exc}
		51.0	0.004 <	0.432
		52.5	0.008 <	1.441
		53.0	0.008 <	3.634

Summary

- Mean-field dynamics
 - Dynamical reduction in potential
 - Good agreement with experiments
 - Universal behavior of Energy dissipation

- Beyond mean field
 - Stochastic mean field
 - Good description for mass variance σ_{AA}^2
 - Fluctuation for other collective variables

Introduction: Low energy nuclear dynamics

(Energy < 10 MeV/A)

Goal: Unified microscopic theory for nuclear structure and dynamics

