Dynamics and Correlations in Exotic Nuclei Yukawa Institute for Theoretical Physics, Kyoto Univ. Sept. 23, 2011

Real-time TDDFT for molecules and solids

K. Yabana

Collaborators:

Y. Shinohara T. Sugiyama Y. Kawashita T. Otobe J.-I. Iwata

K. Nobusada (QC) T. Nakatsukasa (NP) A. Rubio (CM) G.F. Bertsch (NP) Univ. Tsukuba Univ. Tsukuba Univ. Tsukuba JAEA, Kansai Univ. Tokyo

IMS RIKEN U. San Sebastian U. Washington

Nuclei Atoms, Molecules, Solids Composed of nucleons Electron many-body systems 10^{-10} m 10^{-15} m Size 1MeV 1eV Energy 10^{-17} s 10^{-23} s Time $10^9 eV$ Mass $5 \times 10^5 eV$ Interaction Nuclear force Coulomb force (Strong interaction) **Statistics** Fermion Fermion

Time-Dependent Density Functional Theory

Successful for quantitative description of many-fermion dynamics

Nuclei (nucleon dynamics)

Atoms, Molecules, Solids (electron dynamics)

Linear response regime

- Giant resonances ((Q)RPA)

Low-lying electronic excitaiton in moleculesOptical response of molecules and solids

Nonlinear regime, Initial value problem

- Heavy ion collision

- Laser science (Intense and ultra-short laser pulse) History: (TD)DFT in nuclear and electronic systems

Nuclear Physics

1970 Density matrix expansion Skyrme-HF calculation

1975 Continuum RPA (Shlomo-Bertsch)

1978 Real-time 3D calculation for fusion

1980 3D grid, high order finite difference

Electronic systems

1965 Hohenberg-Kohn Kohn-Sham

1980 Runge-Gross (extend HK theorem for TD)

1980 Continuum RPA (Zangwill-Soven)

1985- Atomic cluster physics

~1990 gradient correction $\nabla \rho$

1994 3D grid, high order finite difference

1996 Real-time 3D calculation

Late 1990's ~ Development of Quantum chemistry method

Continuum RPA

- Linearized TDDFT, spherical system, scattering boundary condition -

$$\delta\rho(\vec{r}) = \int d\vec{r} \, \Pi_0(\vec{r}, \vec{r}', \omega) \Biggl\{ \int d\vec{r}'' \frac{\delta h(\vec{r}')}{\delta \rho(\vec{r}'')} \delta\rho(\vec{r}'') + V(\vec{r}') \Biggr\}$$
$$\Pi_0(\vec{r}, \vec{r}', \omega) = \sum_j \phi_j^* G(\hbar\omega + \varepsilon_j) \phi_j + \phi_j G(-\hbar\omega + \varepsilon_j) \phi_j^*$$
$$G(\vec{r}, \vec{r}', E) = \langle \vec{r} | \frac{1}{E - h_0} | \vec{r}' \rangle = \sum_L \frac{u_L(r_<) v_L(r_>)}{rr'} \sum_M Y_{LM}^*(\hat{r}) Y_{LM}(\hat{r}') \Biggr\}$$

Fig. 9.1. Giant dipole resonance in ¹⁶O. Dashed line: experimental; solid line, continuum RPA theory (Shlomo and Bertsch (1975)).

Shlomo, Bertsch 1975

Photoabsorption of

Giant Resonance in Metallic clusters (Mie plasmon)

$$\begin{cases} -\frac{\hbar^2}{2m}\vec{\nabla}^2 + \sum_a V_{ion}(\vec{r} - \vec{R}_a) + e^2 \int d\vec{r} \cdot \frac{n(\vec{r}, t)}{|\vec{r} - \vec{r}'|} + \mu_{xc}(n(\vec{r}, t)) + V_{ext}(\vec{r}, t) \\ & n(\vec{r}, t) = \sum_i \left| \psi_i(\vec{r}, t) \right|^2 \end{cases}$$

Important residual interaction - Dynamical Screening Effect

History: (TD)DFT in nuclear and electronic systems

Nuclear Physics

1970 Density matrix expansion Skyrme-HF calculation

1975 Continuum RPA (Shlomo-Bertsch)

1978 Real-time 3D calculation for fusion

1980 3D grid, high order finite difference

Electronic systems

1965 Hohenberg-Kohn Kohn-Sham

1980 Runge-Gross (extend HK theorem for TD)

1980 Continuum RPA (Zangwill-Soven)

1985- Atomic cluster physics

~1990 gradient correction $\nabla \rho$

1994 3D grid, high order finite difference

1996 Real-time 3D calculation

Late 1990's ~ Development of Quantum chemistry method Nonlinear regime: Initial value problem

Nuclear fusion reaction of ${}^{16}\text{O}{-}^{16}\text{O}$ Spatial grid: 30x28x16 (10^{-15} m), Time-step $4x10^2$ (10^{-22} s) H. Flocard, S.E. Koonin, M.S. Weiss, Phys. Rev. 17(1978)1682.

FIG. 2. Contour lines of the density integrated over the coordinate normal to the scattering plane for an ${}^{16}O + {}^{16}O$ collision at $E_{1ab} = 105$ MeV and incident angular momentum $L = 13\hbar$. The times t are given in units of 10^{-22} sec.

History: (TD)DFT in nuclear and electronic systems

Nuclear Physics

1970 Density matrix expansion Skyrme-HF calculation

1975 Continuum RPA (Shlomo-Bertsch)

1978 Real-time 3D calculation for fusion

1980 3D grid, high order finite difference

Electronic systems

1965 Hohenberg-Kohn Kohn-Sham

1980 Runge-Gross (extend HK theorem for TD)

1980 Continuum RPA (Zangwill-Soven)

1985- Atomic cluster physics

~1990 gradient correction $\nabla \rho$

1994 3D grid, high order finite difference

1996 Real-time 3D calculation

Late 1990's ~ Development of Quantum chemistry method

TDDFT in Web of Science

History: (TD)DFT in nuclear and electronic systems

Nuclear Physics

1970 Density matrix expansion Skyrme-HF calculation

1975 Continuum RPA (Shlomo-Bertsch)

1978 Real-time 3D calculation for fusion

1980 3D grid, high order finite difference

Electronic systems

1965 Hohenberg-Kohn Kohn-Sham

1980 Runge-Gross (extend HK theorem for TD)

1980 Continuum RPA (Zangwill-Soven)

1985- Atomic cluster physics

~1990 gradient correction $\nabla \rho$

1994 3D grid, high order finite difference

1996 Real-time 3D calculation

Late 1990's ~ Development of Quantum chemistry method Linear polarizability from real-time TDDFT calculation

$$\begin{cases} -\frac{\hbar^{2}}{2m}\vec{\nabla}^{2} + \sum_{a}V_{ion}(\vec{r} - \vec{R}_{a}) + e^{2}\int d\vec{r} \cdot \frac{n(\vec{r}', t)}{|\vec{r} - \vec{r}'|} + \mu_{xc}(n(\vec{r}, t)) + V_{ext}(\vec{r}, t) \\ N(\vec{r}, t) = \sum_{i}\left|\psi_{i}(\vec{r}, t)\right|^{2} \end{cases}$$

Basic ideaK. Yabana, G.F. Bertsch, Phys. Rev. B54, 4484 (1996)
K. Yabana et.al, phys.stat.sol.(b)243, 1121 (2006)Applied electric field: $V_{ext}(\vec{r},t) = eE(t)z$ Induced polarization: $p(t) = \int d\vec{r} z n(\vec{r},t) = \int dt' \alpha(t-t')E(t')$ Frequency dep. polarizability: $\alpha(\omega) = \int dt e^{i\omega t} \alpha(t) = \frac{\int dt e^{i\omega t} p(t)}{\int dt e^{i\omega t} E(t)}$

Simplest choice: $E(t) \propto \delta(t)$ then, $\alpha(\omega) \propto \int dt e^{i\omega t} p(t)$

Linear response in real-time: Hit the molecule and see response.

 $V_{ext}(\vec{r},t) \propto \delta(t) z$

Ethylene (C_2H_4) molecule

Oscillator strength distribution from real-time TDDFT

K. Yabana, Y. Kawashita, T. Nakatsukasa, J.-I. Iwata, Charged Particle and Photon Interactions with Matter: Recent Advances, Applications, and Interfaces Chapter 4, Taylor & Francis, 2010.

$$\begin{cases} -\frac{\hbar^2}{2m}\vec{\nabla}^2 + \sum_a V_{ion}(\vec{r} - \vec{R}_a) + e^2 \int d\vec{r} \cdot \frac{n(\vec{r}\,')}{|\vec{r} - \vec{r}\,'|} + \mu_{xc}(n(\vec{r})) \\ \rightarrow 0 \quad (r \to \infty) \qquad \rightarrow -\frac{e^2}{r} \quad (r \to \infty) \end{cases}$$

LDA cannot describe correct asymptotic behavior (self-interaction problem)

+e

 $\rightarrow -\frac{e^2}{r}$ $(r \rightarrow \infty)$

Nonlocal Fock potential has correct form

Here we employ van Leeuwen – Baerends potential (LB94)

$$v_{xc}^{\sigma}(\vec{r}) = -\beta n_{\sigma}^{1/3}(\vec{r}) \frac{x_{\sigma}^{2}}{1+3\beta x_{\sigma} \sinh^{-1}(x_{\sigma})} \rightarrow -\frac{1}{r} \quad (r \rightarrow \infty) \qquad x_{\sigma} = \frac{|\nabla n_{\sigma}|}{n_{\sigma}^{4/3}}$$

Asymptotically correct behavior at large distance. HOMO energy = - IP

 $\ln e^{-\alpha r} \propto r$

Linear response in crystalline solid

For periodic Hamiltonian, we may apply Bloch's theorem

$$\psi_{nk}\left(\vec{r}+\vec{R}\right)=e^{i\vec{k}\vec{R}}\psi_{nk}\left(\vec{r}\right), \qquad h\left(\vec{r}+\vec{R}\right)=h(\vec{r})$$

Linear potential eE(t)z violates periodicity of the Hamiltonian.

We may recover periodicity by gauge transformation, employing vector potential $\vec{E} = -\vec{\nabla}\phi - \frac{\partial\vec{A}}{\partial t} \qquad \phi = eE(t)z \Leftrightarrow \vec{A} = \hat{z}e\int_{}^{t} dt' E(t')$ $i\hbar \frac{\partial}{\partial t}\psi(t) = \left[\frac{1}{2m}\left(\vec{p} - \frac{e}{c}\vec{A}(t)\right)^{2} - e\phi(\vec{r}, t)\right]\psi(t)$

Equation for vector potential: Dynamics of induced polarization

Bertsch, Iwata, Rubio, Yabana, Phys. Rev. B62(2000)7998.

Electron dynamics in bulk silicon under intense laser pulse

Response to weak-field: dielectric function within TDDFT

Bertsch, Iwata, Rubio, Yabana, Phys. Rev. B62(2000)7998.

Dielectric function of Si in TDDFT (Adiabatic LDA)

Quantitatively not sufficient

- Too small direct bandgap
- Lack of excitonic structure

G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74(2002)601.

arXiv:1107.0199 (July 1, 2011)

S. Sharma, J.K. Dewhurst, A. Sanna, E.K.U. Gross, Bootstrap approx. for the exchange-correlation kernel of time-dependent density functional theory

TDDFT in nonlinear regime: Intense and Ultrashort Laser Pulse

Intense laser pulse on atoms and molecules induces nonlinear electron dynamics

Rescattering phenomena

- Ultrashort X-ray
- Atto-second science
- Molecular orbital tomography

- ...

Ethylene (C_2H_4) molecule

Coulomb explosion: N₂ molecule under intense laser pulse

I=3.35x10¹⁵W/cm², 27fs

N2 15 Ô -1 10 -2 -3 -4 -5 -6 N -7 -8 -10-15 -15 -10 -5 5 10 15 0 y,

"N2_dens_iter001.out" using 1:2:(log(\$3))

Y. Kawashita, Ph.D thesis

As the laser intensity increases,

time (au)

Behavior around breakdown (1x10¹⁵ W/cm², 3.1eV, 40fs)

Initial stage < 15fs, dielectric screening $\varepsilon(0) \approx 5.7$

Substantial excitation, 15-20fs

- phase difference between $E_{ext}(t)$ and $E_{tot}(t)$
- rapid increase of excited electron number and energy transfer
 - \Rightarrow Dielectric breakdown

Metallic response, > 25 fs

 no further increase of excited electron number and energy transfer

Note: plasma frequency for 0.4/atom

$$\omega_p = \left(\frac{4\pi n_{ex}}{m\varepsilon(0)}\right) \approx 4\text{eV}$$

close to frequency of laser pulse, 3.1eV

Energy transfer from laser pulse to diamond

Two photon curve (green) Analytic theory by Keldysh (1965) (red)

Interaction of Intense and ultrashort laser pulse with solids

We know the basic equation, but...

$$i\hbar\frac{\partial}{\partial t}\psi_{i} = \frac{1}{2m}\left(-i\hbar\vec{\nabla} + \frac{e}{c}\vec{A}\right)^{2}\psi_{i} - e\phi\psi_{i} + \frac{\delta E_{xc}}{\delta n}\psi_{i} \qquad n = \sum_{i}\left|\psi_{i}\right|^{2}$$
$$\frac{1}{c^{2}}\frac{\partial^{2}\vec{A}}{\partial t^{2}} - \vec{\nabla}^{2}\vec{A} = \frac{4\pi}{c}\vec{j} \qquad \vec{\nabla}^{2}\phi = -4\pi\{en_{ion} - en_{e}\}$$

Light propagation in matter described by Maxwell equation

$$E(\vec{r},t), \quad B(\vec{r},t)$$

Electron dynamics described by time-dep. Kohn-Sham eq. $\psi_i(\vec{r},t)$

For weak electromagnetic wave, we may apply perturbation theory for electron dynamics to obtain dielectric function $\varepsilon(\omega)$.

Then, Schroedinger and Maxwell equations decouple.

Interaction of Intense and ultrashort laser pulse with solids

We know the basic equation, but...

$$i\hbar\frac{\partial}{\partial t}\psi_{i} = \frac{1}{2m}\left(-i\hbar\vec{\nabla} + \frac{e}{c}\vec{A}\right)^{2}\psi_{i} - e\phi\psi_{i} + \frac{\delta E_{xc}}{\delta n}\psi_{i} \qquad n = \sum_{i}|\psi_{i}|^{2}$$
$$\frac{1}{c^{2}}\frac{\partial^{2}\vec{A}}{\partial t^{2}} - \vec{\nabla}^{2}\vec{A} = \frac{4\pi}{c}\vec{j} \qquad \vec{\nabla}^{2}\phi = -4\pi\{en_{ion} - en_{e}\}$$

Light propagation in matter described by Maxwell equation

$$E(\vec{r},t), \quad B(\vec{r},t)$$

Electron dynamics described by time-dep. Kohn-Sham eq. $\psi_i(\vec{r},t)$

wave length [µm]

Electron dynamics [nm]

For intense electromagnetic field, $D \neq \varepsilon(\omega)E$. We must solve "coupled Maxwell + Schroedinger eq". We also note that there are two different spatial scales, "multi-scale problem" Coupled Maxwell + TDDFT multi-scale simulation

- 1D propagation of laser pulse incident normally on Si surface -

Laser pulse on Si : Maxwell-TDDFT multi-scale calculation

Weak pulse, linear response regime

 $I = 10^{10} W/cm^2$

Laser pulse on Si : Maxwell-TDDFT multi-scale calculation

Intense pulse, nonlinear regime

I=5 x 10^{12} W/cm²

Computational aspects

k-points : 8^3 (reduced by symmetry)

Macroscopic (Maxwell) spatial grid: 256

Time step (commom) = 16,000

1024 Cores, 15 hours @ ISSP, Univ. Tokyo

Formation of electron-hole plasma at the surface of Si (under progress)

Related measurement:

"Generation of dense electron-hole plasma in silicon"

K. Sokoowski-Tinten, D. von der Linde, Phys. Rev. B61, 2643 (2000)

Summary

Real-space, real-time TDDFT calculation

useful for linear and nonlinear dynamics of condensed many-fermion systems, isolated and periodic systems.

Linear response regime

- accurate description for oscillator strength distribution

Nonlinear electron dynamics in ultrashort and ultraintense laser field

- interaction of intense and ultrashort laser pulse with matter
- propagation of light: Maxwell + TDDFT multi-scale simulation

Future problems

- Collision effect is important,
 - how to incorporate in systems with gap; Kadanoff-Baym eq?