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What is a neutron star?

Neutron stars are formed in the catastrophic gravitational
collapse of massive stars at the endpoint of their evolution
during type II supernova explosions.

Neutron stars are the most compact
stars in the Universe:

M ∼ 1 − 2M⊙

R ∼ 10 km

⇒ ρ̄ ∼ 1014 − 1015 g.cm−3

PSR J1846-0258 (Chandra)



Why studying superfluidity in neutron stars?

Neutron stars are by nature
quantum systems : they contain
highly degenerate matter which can
therefore exhibit various phenomena
observed in condensed matter
physics like superfluidity.

Cassiopeia A (NASA)

Superfluidity affects the
evolution of neutron stars :
pulsar glitches, pulsations,
precession, cooling, magnetic
field...



Nuclear superfluidity in neutron stars
The BCS theory was applied to nuclei by Bohr, Mottelson,
Pines and Belyaev
Phys. Rev. 110, 936 (1958).
Mat.-Fys. Medd. K. Dan. Vid. Selsk. 31 , 1 (1959).

N.N. Bogoliubov, who developed a
microscopic theory of superfluidity and
superconductivity, was the first to explore its
application to nuclear matter.
Dokl. Ak. nauk SSSR 119, 52 (1958).

Superfluidity in neutron stars was suggested long ago
(before the actual discovery of neutron stars) by Migdal in 1959.
It was first studied by Ginzburg and Kirzhnits in 1964.
Ginzburg and Kirzhnits, Zh. Eksp. Teor. Fiz. 47, 2006, (1964).



Superfluidity and superconductivity in neutron stars
In spite of their names, neutron stars are not only made of
neutrons! As a consequence, they could contain various kinds
of superfluids and superconductors .

Hydrogen/He
atmosphere

R ~ 10 km

n,p,e, µ

neutron star with
pion condensate

quark−hybrid
star

hyperon 
star

g/cm
3

10
11

g/cm
3

10
6

g/cm
3

10
14

Fe

−π

K−

s u
e r c n d c t

gp

o
ni

u

p

r o
t o

n
s

color−superconducting
strange quark matter
(u,d,s quarks)

CFL−K +

CFL−K 0

CFL−
0π

2SC+s
2SC

n,p,e, µ
quarks

u,d,s

crust

N+e

H

traditional neutron star

strange star

N+e+n
Σ,

Λ,
Ξ,

∆

n superfluid

nucleon star

CFL

CFL

2SC

picture from
F. Weber

Neutron stars are expected to contain at least a neutron
superfluid in their crust.



Superfluidity in neutron-star crusts
Most microscopic calculations have been performed in uniform
neutron matter .
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Microscopic calculations using
different methods predict
different density dependence of
the 1S0 pairing gaps.
Gezerlis & Carlson, Phys. Rev. C
81, 025803 (2010).

Is the neutron superfluid in the crust really uniform? What is the
effect of the nuclei?



Effects of nuclear clusters on superfluidity?

The effects of the clusters cannot be ignored because the
superfluid coherence length is smaller than the lattice spacing.
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Superfluidity in neutron-star crusts with the
Wigner-Seitz approximation

Superfluidity in neutron-star crusts has been already studied by
several groups using the nuclear energy density functional
theory in the W-S approximation.

The effects of the clusters are found to be dramatic at densities
& 0.03 nucleons per fm3; in some cases the pairing gaps are
almost completely suppressed
Baldo et al., Eur.Phys.J. A 32, 97(2007).



Limitations of the W-S approximation

Problems
the results depend very strongly on the boundary
conditions which are not unique

the nucleon densities and pairing fields exhibit spurious
fluctuations due to box-size effects
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Baldo et al., Eur.Phys.J. A 32, 97(2007).

Spurious shell effects ∝ 1/R2

are very large in the bottom
layers of the crust and are
enhanced by the
self-consistency of the
calculations.



Nuclear band theory

Solution
The band theory treats consistently both the nuclear clusters
and the unbound neutrons.
Chamel et al., Phys.Rev.C75(2007)055806.

“I found to my delight that the wave differed from the plane
wave of free electrons only by a periodic modulation.” F. Bloch

ϕαkkk (rrr ) = eikkk ·rrruαkkk (rrr )

uαkkk (rrr +TTT ) = uαkkk (rrr )

α → rotational symmetry around the lattice sites

kkk → translational symmetry of the crystal



Neutron band structure

Body-centered cubic crystal of zirconium like clusters with
N = 160 (70 unbound) and ρ̄ = 7 × 1011 g.cm−3

W-S approximation nuclear band theory
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Anisotropic multi-band neutron superfluidity

In the dense layers of the crust, spatial inhomogeneities are
small and the Hartree-Fock-Bogoliubov equations can thus be
decoupled into the BCS equations

∆αkkk = −1
2

∑

β

∑

k ′k ′k ′

v̄pair
αkkkα−kkkβk ′k ′k ′β−k ′k ′k ′

∆βk ′k ′k ′

Eβk ′k ′k ′

tanh
Eβk ′k ′k ′

2T

v̄pair
αkkkα−kkkβk ′k ′k ′β−k ′k ′k ′ =

∫

d3r vπ[ρn(rrr), ρp(rrr )] |ϕαkkk (rrr )|2|ϕβk ′k ′k ′(rrr)|2

Eαkkk =
√

(εαkkk − µ)2 +∆2
αkkk

εαkkk , µ and ϕαkkk (rrr ) are obtained from band structure
calculations .

Chamel et al., Phys.Rev.C81,045804 (2010).



Validity of the decoupling approximation

The decoupling approximation means that
∫

d3rrr ϕ∗

αkkk (rrr )∆(rrr )ϕβkkk (rrr ) ≃ δαβ

∫

d3rrr |ϕαkkk (rrr )|2∆(rrr )

This approximation is justified whenever ∆(rrr ) varies slowly as
compared to ϕαkkk (rrr) for those states in the vicinity the Fermi
level.

bad for weakly bound nuclei (delocalized continuum states
involved while ∆q(rrr ) drop to zero outside nuclei)

good for strongly bound nuclei

exact for uniform matter

⇒ reasonable for dense layers of neutron-star crusts



Analogy with terrestrial multi-band superconductors
Multi-band superconductors were first studied by Suhl et al. in
1959 but clear evidence were found only in 2001 with the
discovery of MgB2 (two-band superconductor)

In neutron-star crusts,

the number of bands can be huge ∼ up to a thousand!

both intra- and inter-band couplings must be taken into
account



Neutron band structure calculation

1 The equilibrium structure of the inner crust is determined
ignoring pairing using the Extended Thomas-Fermi (up to
the 4th order)+Strutinsky Integral method with Skyrme
functionals.
Onsi et al., Phys.Rev.C77,065805 (2008).

Advantages of the ETFSI method

very fast approximation to the full Har tree-Fock method

avoids the difficulties related to boundary conditions but include
proton quantum shell effects (neutron shell effects are
negligibly small)

Chamel et al.,Phys.Rev.C75(2007),055806.

2 The neutron band structure is then calculated using the
ETFSI fields.



Brussels Skyrme functionals
Experimental data :

2149 measured atomic masses from the 2003 Atomic
Mass Evaluation (σ . 0.58 MeV)

charge radii from the 2003 AME (σ . 0.03 fm)

compressibility 230 ≤ Kv ≤ 250 MeV

Many-body calculations with realistic forces:

isoscalar effective mass M∗
s /M = 0.8

effective mass splitting M∗
s > M∗

v

equation of state of symmetric and neutron matter
1S0 pairing gaps of symmetric and neutron matter

stability against spurious spin and spin-isospin instabilities

Goriely, Chamel, Pearson, Phys.Rev.C82,035804(2010).

With these constraints, these functionals are well-suited for
describing neutron-star crusts.



Non-empirical pairing functional

The pairing functional is fully determined by microscopic 1S0

pairing gaps ∆q(ρn, ρp) in homogeneous matter

Epair(rrr ) =
1
4

∑

q=n,p

vπq [ρn(rrr ), ρp(rrr )]ρ̃q(rrr)2

vπq [ρn, ρp] = − 8π2

Iq(ρn, ρp)

(

~
2

2M∗
q(ρn, ρp)

)3/2

Iq =
√
µq

[

2 log
(

2µq

∆q

)

+ Λ

(

εΛ
µq

)]

Λ(x) = log(16x) + 2
√

1 + x − 2 log
(

1 +
√

1 + x
)

− 4

s.p. energy cutoff εΛ = 16 MeV above the Fermi level
Chamel, Phys. Rev. C 82, 014313 (2010)



Choice of the pairing gap

We take the 1S0 BCS pairing gaps obtained with realistic NN
potentials
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Neutron pairing gaps
ρf

n is the density of unbound neutrons
∆u is the gap in neutron matter at density ρf

n
∆̄u is the gap in neutron matter at density ρn

ρ̄ [fm−3] Z A ρf
n [fm−3] ∆F [MeV] ∆u [MeV] ∆̄u [MeV]

0.07 40 1258 0.060 1.44 1.79 1.43
0.065 40 1264 0.056 1.65 1.99 1.65
0.06 40 1260 0.051 1.86 2.20 1.87
0.055 40 1294 0.047 2.08 2.40 2.10
0.05 40 1304 0.043 2.29 2.59 2.33

The presence of clusters reduces the gaps but much less
than predicted by previous calculations

Both bound and unbound neutrons contribute to the gap.

Chamel et al., Phys.Rev.C81,045804 (2010).



Average neutron pairing gap vs temperature
Example at ρ̄ = 0.06 fm−3
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∆αkkk (T )/∆αkkk (0) is a universal function of T

The critical temperature is approximately given by the
usual BCS relation Tc ≃ 0.567∆F



Pairing field and local density approximation
The effects of inhomogeneities on neutron superfluidity can be
directly seen in the pairing field

∆n(rrr ) = −1
2

vπn[ρn(rrr), ρp(rrr )]
Λ
∑

α,kkk

|ϕαkkk (rrr )|2
∆αkkk

Eαkkk

Example: ρ̄ = 0.06 fm−3 and T = 0
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Pairing field at finite temperature
At T > 0, the neutron pairing field is given by

∆n(rrr ) = −1
2

vπn[ρn(rrr ), ρp(rrr)]
Λ
∑

α,kkk

|ϕαkkk (rrr )|2
∆αkkk

Eαkkk
tanh

Eαkkk

2T

Example: ρ̄ = 0.06 fm−3

The superfluid becomes more
and more homogeneous as T
approaches Tc
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Impact of the pairing cutoff
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ρ̄ [fm−3] ∆F0(16) [MeV] ∆F0(8) ∆F0(4) ∆F0(2) ∆F0(1)
0.070 1.39 1.38 1.37 1.36 1.29
0.050 2.27 2.25 2.27 2.26 2.24

Pairing gaps (hence also critical temperatures) are very weakly
dependent on the pairing cutoff.



Impact on thermodynamic quantities : specific heat
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Band structure effects are small. This remains true for
non-superfluid neutrons.
Chamel et al, Phys. Rev. C 79, 012801(R) (2009)

The renormalization of Tc comes from the density
dependence of the pairing strength.



Dynamical response of the neutron superfluid in
neutron-star crusts

The crust has a strong impact on the neutron superfluid
hydrodynamics.
Pethick, Chamel, Reddy, Prog.Theor.Phys.Sup.186(2010)9.

ρ̄ (fm−3) ρf
n/ρn (%) ρc

n/ρ
f
n (%)

0.0003 20.0 82.6
0.001 68.6 27.3
0.005 86.4 17.5
0.01 88.9 15.5
0.02 90.3 7.37
0.03 91.4 7.33
0.04 88.8 10.6
0.05 91.4 30.0
0.06 91.5 45.9
0.08 104 64.8

The density ρc
n of “conduction”

neutrons (i.e. superfluid
neutron density) can be much
smaller than the density ρf

n of
unbound neutrons!



Summary

1 The EDF theory allows for a consistent treatment of
superfluid neutrons in neutron-star crusts.

2 The Brussels Skyrme functionals are constrained by
experiments and N-body calculations:

they give an excellent fit to essentially all nuclear mass data
(σ ≃ 0.58 MeV)
they reproduce various properties of homogeneous nuclear
matter (EoS, effective masses, pairing gaps, etc)

3 Using the band theory of solids, we have shown that the
crust affects both the static and the dynamic properties of
the neutron superfluid.


