

Continuum particle-vibration coupling method in coordinate-space representation.

INFN, Sezione di Milano, MILANO (Italy)

Kazuhito Mizuyama

G. Colo, Dipartimento di Fisica, Universita degli Studi, Italy.E. Vigezzi, INFN, Sezione di Milano, Milano, Italy.

Many-Particle Systems, McGraw-Hill, 1971

Self-energy function

Self-energy function

$$G_{lj}(rr';\omega) = G_{0,lj}(rr';\omega) + \iint dr_1 dr_2 \ G_{0,lj}(rr_1;\omega) \Sigma_{lj}(r_1r_2;\omega) G_{lj}(r_2r';\omega)$$

$$\hookrightarrow G(rr') = (1 - G_0 \Sigma)^{-1} G_0(rr').$$

-- Level density
HE level density

$$\rho_{0,lj}(\omega) = \sum_{n} \delta(\omega - \epsilon_{nlj}^{(0)}) \text{ for bound states.} (\omega < 0)$$
HE level density

$$\rho_{0,lj}(\omega) = \frac{\pm 1}{\pi} \int_{0}^{R} dr \operatorname{Im} G_{0,lj}(rr, \omega) - G_{Free,lj}(rr, \omega).) \qquad (\omega - \frac{p^{2}}{2m})G_{Free} = 1,$$
HE level density

$$\bar{\rho}_{0,lj}(\omega) = \frac{\pm 1}{\pi} \int_{0}^{R} dr \operatorname{Im} (G_{0,lj}(rr, \omega) - G_{Free,lj}(rr, \omega).) \qquad (\rho_{0,lj}(\omega) = \frac{1}{\pi} \frac{d\delta_{lj}^{(0)}}{d\omega})$$
HE+PVC level density

$$\bar{\rho}_{lj}(\omega) = \frac{\pm 1}{\pi} \int dr \operatorname{Im} (G_{lj}(rr, \omega) - G_{Free,lj}(rr, \omega))$$
Dyson equation

$$G_{lj}(rr'; \omega) = G_{0,lj}(rr'; \omega) + \iint dr_{1}dr_{2} G_{0,lj}(rr_{1}; \omega)\Sigma_{lj}(r_{1}r_{2}; \omega)G_{lj}(r_{2}r'; \omega)$$

 $\rho_{Free,lj}(\omega) \propto \sqrt{\frac{2m}{\hbar^2}} \frac{R}{2\pi\sqrt{\omega}}$

HF level density 1.2 R=15 ... R=20 (a) 11.5 1 R=25 11.1 $^{40}\text{Ca},\rho_{0,1j}$ 10.6f(R.ω) 0.8 63.3 0.6 **g**9/2 0.4 0.2 0 1.ž 81 Level density [MeV⁻¹] (b) 1 0.8 ρ_{Free,1j} 0.6 0.4 0.2 0 1.2 (c) 1 ρ_{0,1j} 0.8 0.6 0.4 0.2 0 -5 -10 0 5 10 ω [MeV]

HF level density*

$$\bar{\rho}_{0,lj}(\omega) = \frac{\pm 1}{\pi} \int_0^R dr \operatorname{Im} \left(G_{0,lj}(rr,\omega) - G_{Free,lj}(rr,\omega) \right)$$

HF+PVC level density

$$\bar{\rho}_{lj}(\omega) = \frac{\pm 1}{\pi} \int dr \operatorname{Im} \left(G_{lj}(rr,\omega) - G_{Free,lj}(rr,\omega) \right)$$

HF v.s. HF+PVC level density

7

Nuclear Data Sheets 107, 225 (2006) Nuclear Data Sheets 94, 429 (2001)

We investigated a new particle-vibration coupling method which treats the continuum properly.

- Key points:
 - Causal <u>continuum HF Green's function</u> and <u>continuum RPA response function</u>.
 - Contour integration on the complex energy plane.
 - Dyson equation in coordinate space representation.

Our formulation is based on the microscopic effective mean field theory; the Skyrme HF and Random-phase approx.(RPA).

We showed the level density as our numerical results with SLy5 in ⁴⁰Ca (²⁰⁸Pb, ²⁴O). We obtained the consistent energy-shift with the previous PVC calculations(Gianluca's results) in single-particle energies of ⁴⁰Ca.

We compared the level density defined by the Green's function with the experimental data. Our results are overall agreement with the experimental data in ³⁹Ca and ⁴¹Ca.

- Some difference(d_{5/2}, f_{7/2}) maybe due to the disagreement between the RPA quadrupole phonon and the experimental data.
 - \rightarrow The improvement of RPA is needed?

