RPA and QRPA calculations with Gaussian expansion method

H. Nakada (Chiba U., Japan)

@ DCEN2011 Symposium (YITP, Sep. 26, 2011)

Contents:

- I. Introduction
- II. Test of GEM for MF calculations
- III. Test of GEM for RPA (& QRPA) calculations
- IV. Several topics
 - V. Summary & future prospect

I. Introduction

. . .

Exotic structure of unstable nuclei

presence of halo, skin
 Z,N-dep. of shell structure & magic number
 influence of continuum, resonance
 ····

 \Rightarrow new methods of numerical calculations desired adaptable to unstable nuclei (as well as stable nuclei)

 $\label{eq:MF-theory} \begin{array}{l} \text{MF theory} \rightarrow \text{s.p. states} \cdots \end{array} \left\{ \begin{array}{l} \text{1st approx.} \\ \text{good basis for extensive study} \end{array} \right.$

in nuclear structure calculations

new methods of MF cal.: PTG basis, WS basis, GEM, GF method, etc.

Excitations of unstable nuclei

influence of halo, skin, exotic shell structure, \cdots ? \rightarrow reliable MF may be crucial!

- \Rightarrow RPA (& QRPA)
 - well connected to MF theory (self-consistency)

 \rightarrow in principle, no additional parameters !

• suitable to describe global characters of excitations

(in mass table & ω)

- well adapted to collective excitations
- spurious modes well separated (if numerical method is good)
- lacks coupling to 2p-2h d.o.f. (\rightarrow keep in mind!)

II. Test of GEM for MF calculations

"Gaussian expansion method" (GEM) E. Hiyama *et al.*, Prog. Part. Nucl. Phys. 51, 223 ('03)

Applications of GEM to MF calculations

- spherical HF … H.N. & M. Sato, N.P.A 699, 511 ('02); 714, 696 ('03)
- spherical HFB · · · · H.N., N.P.A 764, 117 ('06); 801, 169 ('08)
- axial HF & HFB · · · H.N., N.P.A 808, 47 ('08)

Advantages of the method

- (i) ability to describe ε -dep. exponential/oscillatory asymptotics
- (ii) tractability of various 2-body interactions
- (iii) basis parameters insensitive to nuclide
- (iv) exact treatment of Coulomb & c.m. Hamiltonian

 \bigstar Outline of the method

• basis:
$$\phi_{\nu\ell jm}(\boldsymbol{r}) = R_{\nu\ell j}(r) \left[Y^{(\ell)}(\hat{\boldsymbol{r}})\chi_{\sigma} \right]_{m}^{(j)}; \quad R_{\nu\ell j}(r) = \mathcal{N}_{\nu\ell j} r^{\ell} \exp(-\nu r^{2})$$

 $\nu \rightarrow \text{complex} \quad \nu = \nu_{r} + i\nu_{i}$
 $\operatorname{Re}[R_{\nu\ell j}(r)]$
 $\operatorname{Im}[R_{\nu\ell j}(r)]$
 $\left\{ \begin{array}{c} \propto r^{\ell} \exp(-\nu_{r} r^{2}) \\ \sin(\nu_{i} r^{2}) \end{array} \right\}$

GEM vs. HO bases $(s_{1/2})$

Real- & complex-range GEM bases ($s_{1/2}, \nu_i/\nu_r = \pi/2$)

• **2-body int.** matrix elements \leftarrow Fourier transform.

 \Rightarrow various interactions

 \circ central, LS, tensor channels

- \circ function form of r delta, Gauss, Yukawa, etc.
- c.m., Coulomb (including exchange terms)
- solve HF/HFB eq. as generalized eigenvalue problem \rightarrow iteration (alternatively, gradient method may be applied)

\bigstar Wave-function asymptotics in HFB

for large
$$r$$

 $U_i(\boldsymbol{r}) \approx \begin{cases} \cos(p_{i+}r + \theta_{i+})/r \text{ for } \lambda + \varepsilon_i > 0 & (p_{i+} \equiv \sqrt{2M(\lambda + \varepsilon_i)}) \\ \exp(-\eta_{i-}r)/r & \text{for } \lambda + \varepsilon_i < 0 & (\eta_{i-} \equiv \sqrt{2M(-\lambda - \varepsilon_i)}) \end{cases}, \\ V_i(\boldsymbol{r}) \approx & \exp(-\eta_{i+}r)/r & \text{for } \lambda - \varepsilon_i < 0 & (\eta_{i+} = \sqrt{2M(-\lambda + \varepsilon_i)}) \\ \lambda(< 0) \text{: chem. pot., } \varepsilon_i(> 0) \text{: q.p. energy} \end{cases}$

 \cdots exponential & oscillatory asymptotics!

 $ns_{1/2}$ levels in ²⁶O

 $\cdots \varepsilon$ -dep. exponential & oscillatory asymptotics well described by GEM

★ Single basis-set? — various doubly magic nuclei (HF with Gogny-D1S)

basis:
$$R_{\nu\ell j}(r) = \mathcal{N}_{\nu\ell j} r^{\ell} \exp(-\nu r^2), \ \nu = \nu_{\rm r} + i\nu_{\rm i}$$
:
 $\nu_{\rm r} = \nu_0 b^{-2k}, \quad \begin{cases} \nu_{\rm i} = 0 & (k = 0, 1, \cdots, 5) \\ \frac{\nu_{\rm i}}{\nu_{\rm r}} = \pm \frac{\pi}{2} & (k = 0, 1, 2) \end{cases}; \quad \nu_0 = (2.40 \,\mathrm{fm})^{-2}, \ b = 1.25 \end{cases}$

 \rightarrow #(basis)=12, irrespective of (ℓ, j)

 \Rightarrow store int. matrix elements (~4GB), & use them for all calculations!

— "peanut-shape" neutron halo in ${
m ^{40}Mg}$!

III. Test of GEM for RPA (& QRPA) calculations

★ Comparison of methods for contact force

Ref.: H.N. et al., Nucl. Phys. A 828, 283 ('09)

 \circ MF — Woods-Saxon pot.

◦ residual int. — contact force Shlomo & Bertsch, N.P.A 243, 507 ('75) $\hat{v}_{res} = f \left[t_0 (1 + x_0 P_{\sigma}) \, \delta(\mathbf{r}_1 - \mathbf{r}_2) + \frac{1}{6} t_3 (1 + x_3 P_{\sigma}) \, \rho(\mathbf{r}_1) \, \delta(\mathbf{r}_1 - \mathbf{r}_2) \right]$ $f \leftarrow \omega_s = 0 \text{ (spurious c.m. state)}$ • sample nuclei — ^{40,48,60}Ca

Methods to be compared

1. GEM(basis-set adopted in HF & HFB cal.)2. quasi-HO basis $(N_{osc} \leq 11)$ 3. r-space with box boundary $(h = 0.2 \text{ fm}, r_{max} = 20 \text{ fm}, \Delta \varepsilon_{cut} \geq 50 \text{ MeV})$ 4. continuum RPA(h = 0.2 fm)1. 2 (, 3). ... MF cal. \rightarrow solve RPA eq.

• Strength function: $\mathcal{O}^{(\lambda, \tau=0)} = \sum r_i^{\lambda} Y^{(\lambda)}(\hat{\mathbf{r}}_i)$

ω & B(λ) for discrete states $\bar{ω}, B(λ) \& σ$ for continuum

Cont.

GEM

quasi-HO

Box

 well described by GEM (not so well by quasi-HO, particularly for ⁶⁰Ca) • Transition density:

 The GEM results are in fair agreement with the 'exact' ones
 The quasi-HO results have significant discrepancy for low-energy excitation near the drip line
 ↔ difficulty in describing r ≥ 10 fm components ★ HF + RPA (by GEM with Gogny-D1S) $\hat{H} = \hat{K} + \hat{V}_N + \hat{V}_C - \hat{H}_{c.m.}$ $\hat{K} = \sum_i \frac{p_i^2}{2M}$ \hat{V}_N : effective NN int. (finite-range !) \hat{V}_C : Coulomb int. (including exchange terms exactly) $\hat{H}_{c.m.}$: c.m. Hamiltonian (1- + 2-body terms)

• Spurious c.m. state — $\omega_s = 0$?

nuclide	ω_s^2	
$^{40}\mathbf{Ca}$	-5.80×10^{-6}	
48 Ca	-8.61×10^{-6}	
60 Ca	-2.67×10^{-6}	

··· well separated from physical mode (also confirmed by B(E1))

• EWSR

$$\sum_{\alpha} \omega_{\alpha} \left| \langle \alpha | \mathcal{O}^{(\lambda,\tau=0)} | 0 \rangle \right|^{2} = \frac{1}{2} \langle 0 | [\mathcal{O}^{(\lambda,\tau=0)\dagger}, [H, \mathcal{O}^{(\lambda,\tau=0)}]] | 0 \rangle$$
$$= \frac{\lambda (2\lambda+1)^{2}}{4\pi} \frac{1}{2M} \left[\left(1 - \frac{1}{A}\right) \langle 0 | \sum_{i} r_{i}^{2\lambda-2} | 0 \rangle - \frac{4\pi}{2\lambda - 1} \frac{1}{A} \langle 0 | \sum_{i \neq j} r_{i}^{\lambda-1} Y^{(\lambda-1)}(\hat{\mathbf{r}}_{i}) \cdot r_{j}^{\lambda-1} Y^{(\lambda-1)}(\hat{\mathbf{r}}_{j}) | 0 \rangle \right]$$

(last term \leftarrow 2-body terms of $H_{\text{c.m.}}$)

$$\rightarrow \mathcal{R}^{(\lambda,\tau)} = \sum_{\alpha} \omega_{\alpha} \left| \langle \alpha | \mathcal{O}^{(\lambda,\tau)} | 0 \rangle \right|^2 / \frac{1}{2} \langle 0 | [\mathcal{O}^{(\lambda,\tau)\dagger}, [H, \mathcal{O}^{(\lambda,\tau)}]] | 0 \rangle = 1 ?$$

nuclide	$\mathcal{R}^{(\lambda=2, au=0)}$	$\mathcal{R}^{(\lambda=3, au=0)}$
40 Ca	1.005	1.031
48 Ca	1.006	1.033
60 Ca	1.003	1.010

\star HFB + QRPA

 $\Delta \varepsilon_{\text{cut}}$: cut-off energy for unperturbed 2 q.p. states \rightarrow convergence? HF + RPA (for reference) HFB + QRPA

ω_s^2	(MeV^2)	•	
--------------	-----------	---	--

$\Delta \varepsilon_{\rm cut} ({\rm MeV})$	44 Ca 1 ⁻	110 Sn 0 ⁺	
100		2.4×10^{-1}	L
200	-4.9×10^{-4}	5.5×10^{-2}	2
300	-1.8×10^{-5}	4.4×10^{-2}	2
500		5.3×10^{-3}	3
1000		-4.8×10^{-6}	3

(by GEM with Gogny-D1S)

IV. Several topics

★ Application with *semi-realistic* interaction
'M3Y-Pn' ← M3Y int. + phenomenological modification (mainly, saturation & *ls* splitting) Ref.: H.N., P.R.C 68, 014316 ('03)
'M3Y-P5' & 'P5'' — full inclusion of v^(C)_{OPEP} (central part of OPEP) & v^(TN) (G-matrix-based tensor force)
Ref.: H.N., P.R.C 78, 054301 ('08); 82, 029902(E) ('10) P.R.C 81, 027301 ('10); 82, 029903(E) ('10)
• Effects of v^(C)_{OPEP} & v^(TN) on shell structure → see Refs.

Ref.: H.N., P.R.C 81, 051302(R) ('10) E.P.J.A 42, 565 ('09) in AIP Proc. 1377 (to be published) • Tensor-force effects on M1 transition in ²⁰⁸Pb (HF + RPA)

1p-1h excitation — $p: (0h_{11/2})^{-1}(0h_{9/2}), n: (0i_{13/2})^{-1}(0i_{11/2})$

IV dominance $\rightarrow B(M1; 0^+_1 \rightarrow 1^+(\text{"IS"}))$ sensitive to \hat{V}_{res}

			M3Y-P5		Exp.
			$\hat{v} - \hat{v}^{(\mathrm{TN})}$	\hat{v}	
" IS "	E_x	(MeV)	6.87	5.85	5.85
	$B(M1) \uparrow$	(μ_N^2)	4.7	2.4	2.0
" IV "	E_x	(MeV)	9.2 - 10.9	9.2 - 10.9	7.1 - 8.7
	$(ar{E_x})$		(9.9)	(9.6)	
	$\sum B(M1) \uparrow$	(μ_N^2)	16.3	19.4	16.3 or 18.2

 $(\hat{T}^{(M1)} \cdots$ including corrections from 2*p*-2*h* & MEC) \cdots role of tensor force reconfirmed

Ref.: T. Shizuma et al., P.R.C 78, 061303(R) ('08)

$$\left(ext{effects of 2-body correlations}? - \left\{ egin{array}{c} ext{IS} & \cdots & ext{weak} \ ext{IV} & \cdots & ext{strong} \end{array}
ight.
ight.$$

- \bigstar Low-energy excitations of "doubly-magic" nuclei
 - ⁷⁸Ni

erosion of Z = 28 magicity due to $v^{(TN)}$?

Ref.: T. Otsuka *et al.*, P.R.L. 95, 232502 ('05) MF cal. with semi-realistic int. (incl. $v^{(TN)}$) \rightarrow magicity preserved

 \Rightarrow will be resolved by near-future experiments!

a key exp. — $E_x(2_1^+) \rightarrow HF + RPA$ prediction

(with Z = 28 magicity)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		D1S	D1M	M3Y-P5′
$B(E2; 2^+_1 \to 0^+_1) \ (e^2 \text{fm}^4) $ 84.4 83.4 84.4	$E_x(2_1^+)$ (MeV)	3.15	3.00	3.25
	$B(E2; 2_1^+ \to 0_1^+) \ (e^2 \text{fm}^4)$	84.4	83.4	84.4

 \rightarrow reference of experiments

Ref.: H.N., P.R.C 81, 051302(R) ('10)

 \star B(E2) in Sn isotopes (— preliminary!)

 $B(E2; 0_1^+ → 2_1^+) \text{ in } N \ge 70$ ◦ well adjusted to exp. by $e_n^{\text{eff}} = 1.0 e$ in shell model Ref.: A. Banu *et al.*, P.R.C 72, 061305(R) ('05) ◦ well reproduced in HFB + QRPA with no adjustable parameters

$B(E2; 0_1^+ \to 2_1^+)$ in $N \sim 60$

- A) underestimate in shell model (with $e_n^{\text{eff}} = 1.0 e$)
- B) overestimate in HFB + QRPA with M3Y-P5'
- C) severe overestimate in HFB + QRPA with D1S

(& SLy4? Ref.: J. Terasaki et al., P.R.C 78, 044311 ('08))

 \Rightarrow A) vs. B) & B) vs. C)

• B) QRPA with M3Y-P5' vs. C) QRPA with D1S — problem of D1S at $N \sim 60$

close to deformation because of strong $n0g_{7/2} \rightarrow n1d_{3/2}$ excitation

 $\leftarrow shell \ structure !$

• A) Shell model vs. B) QRPA with M3Y-P5'

shell model (on top of ¹⁰⁰Sn core) — only neutrons in valence shell coupling to GQR (core pol.) $\rightarrow e_n^{\text{eff}} \rightarrow E2$ strength constant e_n^{eff} hypothesis — true?

 \rightarrow A-dep. of e_n^{eff} ? (but overshooting)

to be considered

- \circ q.p. states → canonical bases (in defining valence orbits) Ref.: J. Dobaczewski *et al.*, P.R.C 53, 2809 ('96)
- \circ backward amp. on/off

IV. Summary

• Gaussian expansion method (GEM) has successfully been applied to MF & RPA calculations.

Advantages:

- (i) ability to describe ε -dep. exponential/oscillatory asymptotics
- (ii) tractability of various 2-body interactions
- (iii) basis parameters insensitive to nuclide
- (iv) exact treatment of Coulomb & c.m. Hamiltonian
- Several results have been shown:
 - Tensor-force effects on M1 transition in ²⁰⁸Pb
 - -Low-energy excitation of "doubly-magic" nuclei (e.g. 2_1^+ in ⁷⁸Ni)
 - -B(E2) in Sn isotopes (tensor-force effect, A-dep. effective charge?)

Contributors:

HF:M. Sato(Chiba U. until 2004)RPA:K. Mizuyama(Milan)M. Yamagami(Aizu)M. Matsuo(Niigata) 208 Pb M1:T. Shizuma(JAEA):

Sn *E*2: Special thanks to **K**. **Matsuyanagi** (for giving key information)