Ab initio computations and effective theory for deformed nuclei

Thomas Papenbrock

and

OAK RIDGE NATIONAL LABORATORY

Gaute Hagen (Oak Ridge), Morten Hjorth-Jensen (Oslo), Øyvind Jensen (Bergen), Hai Ah Nam (Oak Ridge), David Pigg (Oak Ridge)

YITP Kyoto

Dynamics and Correlations in Exotic Nuclei

26-September-2011

Research partly funded by the US Department of Energy

JUSTIPEN

Japan-U.S. Theory Institute for Physics with Exotic Nuclei

- YITP program "Dynamics and Correlations in Exotic Nuclei" official JUSTIPEN activity, ~6 US participants partially supported
- JUSTIPEN now in its 6th year, 70k\$ annual budget
- Statistics for past three years:
 - about 20 travelers per year, staying on average for 12 days each
 - total of about 50 visits by ~30 individuals from 15 US institutions
 - a lot of good science! 25+ publications that acknowledge JUSTIPEN support
 - New collaborations formed, existing collaborations strengthened
- Other programs (JUSEIPEN & FUSTIPEN [operating], CUSTIPEN [proposed]) modeled after JUSTIPEN

Overview

- 1. Introduction
- 2. Proton halo state in ¹⁷F
- 3. Coupled-clusters as a similarity renormalization group transformation
- 4. Effective theory for deformed nuclei
- 5. Summary

Nuclei across the chart

118 chemical elements (94 naturally found on Earth)288 stable (primordial) isotopes

Thousands of short-lived isotopes – many with interesting properties

Energy scales and relevant degrees of freedom

Ab initio description of proton-halo state in ¹⁷F

- Separation energy of halo state is only 105 keV
- Continuum has to be treated properly
- Focus is on single-particle states
- Previous study: shell model in the continuum with¹⁶O core

[K. Bennaceur, N. Michel, F. Nowacki, J. Okolowicz, M. Ploszajczak, Phys. Lett. B 488, 75 (2000)]

Bound states and resonances in ¹⁷F

Single-particle basis consists of bound, resonance and scattering states

- Gamow basis for $s_{1/2}\,d_{5/2}$ and $d_{3/2}\,\text{single-particle states}$
- Harmonic oscillator states for other partial waves

Computation of single-particle states via "Equation-of-motion CCSD"

- Excitation operator acting on closed-shell reference
- Here: superposition of one-particle and 2p-1h excitations

- Gamow basis weakly dependent on oscillator frequency
- \bullet d_{\rm 5/2} not bound; spin-orbit splitting too small
- $\bullet\ s_{1/2}$ proton halo state close to experiment

[G. Hagen, TP, M. Hjorth-Jensen, Phys. Rev. Lett. 104, 182501 (2010)]

Size of three-nucleon forces from variation of highmomentum (renormalization group)

Similarity RG transformation [S.K. Bogner, R.J. Furnstahl, R.J. Perry, PRC 75, 061001(2007); Hergert & Roth 2007; Wegner 1994; Glazek & Wilson 1994]

- RG transformation of NN force induces NNN
- RG of NN and NNN almost independent of cutoff

• Small cutoff dependence \rightarrow NNNN forces small

[Jurgenson, Navratil & Furnstahl, Phys. Rev. Lett. 103, 082501 (2009)]

Cutoff-dependence implies missing physics from short-ranged many-body forces.

Variation of cutoff probes omitted short-range forces

- Proton-halo state $(s_{1/2})$ only weakly sensitive to variation of cutoff
- Spin-orbit splitting increases with decreasing cutoff

[G. Hagen, TP, M. Hjorth-Jensen, Phys. Rev. Lett. 104, 182501 (2010)]

Time-dependent CC method

[Hoodbhoy & Negele 1978]

Imaginary-time propagation is a (non-unitary) SRG transformation

$$H(\tau) = e^{-S(\tau)} H e^{S(\tau)}$$
$$\partial_{\tau} H(\tau) = [H(\tau), \partial_{\tau} S]$$

Generator of this SRG:

1p-1h & 2p-2h excitations of the similarity-transformed Hamiltonian

$$\partial_{\tau} s_{0} = -\langle \Phi | e^{-S} H e^{S} | \Phi \rangle ,$$

$$\partial_{\tau} s_{i}^{a} = -\langle \Phi_{i}^{a} | e^{-S} H e^{S} | \Phi \rangle ,$$

$$\partial_{\tau} s_{ij}^{ab} = -\langle \Phi_{ij}^{ab} | e^{-S} H e^{S} | \Phi \rangle ,$$

SRG: Glazek & Wilson 1993; Wegner 1994; Bogner, Furnstahl, Perry 2007; Tsukiyama, Bogner, Schwenk 2011.

Imaginary time evolution

Imaginary time evolution as similarity renormalization group flow

Evolution of first column of Hamiltonian matrix

Deformation of atomic nuclei

Effective theory for deformed nuclei

Let us follow ideas by Weinberg, Leutwyler, ...

- Identify the relevant degrees of freedom for the resolution scale of interest: Quadrupole phonons
- 2. Identify the relevant symmetries of lowenergy nuclear physics and investigate if and how they are broken:

Spontaneously broken rotational symmetry

3. Construct the most general Lagrangian consistent with those symmetries and the symmetry breaking.

Nonlinear realization of rotational symmetry

Design an organizational scheme (power counting) that can distinguish between more and less important contributions:
 Separation of scale between rotational and vibrational modes

Separation of scale: $\xi << \Omega \frac{172}{70} Yb_{102}$

Nonlinear realization of a symmetry – main idea

Nonlinear realization of (rotational) symmetry

Weinberg 1967; Coleman, Callan, Wess & Zumino 1969

Assume ground state is invariant only under rotations around the z-axis. Rotations of that state cannot be distinguished if they differ only by a rotation around the z-axis.

Nambu-Goldstone modes parameterize the coset SO(3)/SO(2) ~ S²

Nambu-Goldstone modes:

Rotations that change the ground state:

$$g(\alpha,\beta) = e^{-i\alpha \hat{J}_z} e^{-i\beta \hat{J}_y}$$

Non-linear realization:

The angles α and β parameterize the two-sphere. Under rotations, they transform nonlinearly.

Effective theory – not an effective field theory: The angles depend only on time $\alpha = \alpha(t)$, $\beta = \beta(t)$

Nonlinear realization of the rotational symmetry: Quantities with definite symmetry properties

1. E_x and E_y transform as the x and y-components of a vector under rotations.

$$E_x = \dot{\alpha} \sin \beta \\ E_y = -\dot{\beta}$$

2. The "covariant derivative" D_t transforms as the z-component of a vector under rotations.

$$D_t \equiv \partial_t - iE_z J_z$$
$$E_z = -\dot{\alpha}\cos\beta$$

Any Lagrangian consisting of combinations of E_x , E_y , and D_t (acting on other fields) **that is formally invariant under SO(2)** (i.e. axially symmetric) **is indeed invariant under SO(3)**.

Weinberg (1967); Coleman, Wess, Zumino (1969); Callan, Coleman, Wess & Zumino (1969).
Pedagogical reviews: S. Weinberg, The Quantum Theory of Fields, Vol.II, chap. 19;
C. P. Burgess, Physics Reports 330 (2000) 193; T. Brauner, arXiv:1001.5212.

Nambu-Goldstone modes

Lagrangian

$$L = \frac{C_0}{2} (\partial_t \vec{n}) \cdot (\partial_t \vec{n}) = \frac{C_0}{2} (\dot{\beta}^2 + \dot{\alpha}^2 \sin^2 \beta)$$

Hamiltonian

$$H = \frac{p_\beta^2}{2C_0} + \frac{p_\alpha^2}{2C_0 \sin^2 \beta}$$

Quantization

$$p_{\beta}^{2} = -\frac{1}{\sin\beta}\partial_{\theta}\sin\beta\partial_{\beta} ,$$

$$p_{\alpha} = -i\partial_{\alpha} .$$

Spectrum

$$\hat{H}Y_{lm}(\beta,\alpha) = \frac{l(l+1)}{2C_0}Y_{lm}(\beta,\alpha)$$

Rotational bands are quantized Nambu-Goldstone modes. Low-energy constant C_0 is moment of inertia and fit to data.

Nuclei with nonzero ground-state spins: Wess Zumino terms

A finite ground-state spin breaks time reversal invariance.

 \rightarrow Consider terms that are first order in the time derivative

 \rightarrow No such terms are invariant under rotations.

BUT: under rotations, E_z changes by a total derivative. Action remains essentially invariant (Wess-Zumino term)

Lagrangian
$$L_{\rm LO} = L_{\rm LO}^{(ee)} + L_{\rm WZ}$$

 $= \frac{C_0}{2} \left(\dot{\beta}^2 + \dot{\alpha}^2 \sin^2 \beta \right) - q \dot{\alpha} \cos \beta$
Hamiltonian $H_{\rm LO} = \frac{p_{\beta}^2}{2C_0} + \frac{(p_{\alpha} + q \cos \beta)^2}{2C_0 \sin^2 \beta}$

Eigenvalues and eigenfunctions (Identify q with ground-state spin!)

$$\hat{H}_{\rm LO} d_{mq}^{l}(\beta) e^{-i\alpha m} = E_{\rm LO}(q, l) d_{mq}^{l}(\beta) e^{-i\alpha m}$$
$$E_{\rm LO}(q, l) = \frac{l(l+1) - q^{2}}{2C_{0}} \qquad l = |q|, |q| + 1, |q| + 2, \dots$$

 $D^l_{mq}(\alpha,\beta,\gamma)\equiv e^{-im\alpha}d^l_{mq}(\beta)e^{-iq\gamma}\quad \mbox{(Wigner D functions)}$

Power counting and beyond leading order

Estimates

(naïve dimensional analysis) $H_{LO} \sim \xi$

$$C_0 \sim \xi^{-1} ,$$

$$p_\beta \sim p_\alpha \sim q \sim \xi^0 ,$$

$$\dot{\beta} \sim \dot{\alpha} \sim E_{x,y,z} \sim \xi .$$

Lagrangian at NLO

$$L_{\rm NLO} = L_{\rm LO} + \frac{C_2}{4} \left(E_x^2 + E_y^2 \right)^2$$

Power counting

Main idea: higher-oder term due to neglected couplings between NG modes and vibrations. $[C_2/C_0]$ = energy⁻²

$$\frac{C_2}{C_0} \sim \Omega^{-2} \quad \Longrightarrow \quad \frac{C_2}{C_0} \left(E_x^2 + E_y^2 \right) \sim \left(\frac{\xi}{\Omega} \right)^2 \ll 1$$

Spectrum: AL(L+1) + B(L(L+1))² for even-even nuclei. (Bohr & Mottelson) In general:

$$E_{\rm NLO} = \left(1 - \frac{C_2}{C_0^2} E_{\rm LO}\right) E_{\rm LO}$$

relative error

Beyond NG modes: coupling to vibrations

Higher energetic degrees of freedom need to be included.

Quadrupole field exhibits spontaneous symmetry breaking.

 \rightarrow 5 DoF – 2NG = 3DoF

Separation of scale: $\xi << \Omega$

Couplings to vibrations: power counting

Low energy scale ξ High energy scale $\Omega >> \xi$

Dimensional analysis

$$v \sim \phi_0 \sim \xi^{-1/2} ,$$

$$\varphi_0 \sim \phi_2 \sim \Omega^{-1/2} ,$$

$$\dot{\varphi}_0 = \dot{\phi}_0 \sim \dot{\phi}_2 \sim \Omega^{1/2} .$$

Potential expanded around miniumum

$$V_2(\phi) = \frac{\omega_0^2}{2} (\phi_0 - v)^2 + \frac{\omega_2^2}{4} |\phi_2|^2$$
$$V = V_2 + \sum_{k+2l>2} v_{kl} \varphi_0^k |\phi_2|^{2l}$$

Power counting: large amplitudes $\phi_0 \approx v$ restore rotational symmetry \rightarrow breakdown of EFT

$$v_{kl}\varphi_0^k |\phi_2|^{2l} \sim \Omega\left(\frac{\xi}{\Omega}\right)^{l-1+k/2}$$

Main results: effective theory for deformed nuclei

[TP, Nucl. Phys. A 852, 36 (2011)]

• Odd-mass and odd-odd nuclei on equal footing with even-even nuclei

$$E_{\rm LO}(q,l) = \frac{l(l+1) - q^2}{2C_0}$$

Bohr Hamiltonian / general collective model recovered in next-to-leading order

$$E(n_0, n_2, m_l, l) = \omega_0 \left(n_0 + \frac{1}{2} \right) + \frac{\omega_2}{2} (2n_2 + |m_l| + 1)$$

+ $\frac{1}{6v^2} \left(l(l+1) - (2m_l)^2 \right)$

- Novel terms in Hamiltonian seen at next-to-next-to leading order
- Field-theoretical formulation under way.
- **First insights**: vibrations are true NG-modes (compare w/ spin waves); quantized rotations from finite system (no spontaneous symmetry breaking) [TP and H. A. Weidenmüller, work in progress]

Summary & Outlook

- Model independent description of atomic nuclei under way!
- Inclusion of continuum effects → merger of structure and reactions; essential for computation of fragile halo states and weakly-bound nuclei
- Coupled-cluster method (imaginary time evolution) is a SRG
- Effective theory for deformed nuclei under development; treats nuclei with finite ground-state spins on same footing as even-even nuclei

Leading order $\sim O(\Omega)$

Lagrangian at leading order:

$$L_{\rm LO} = \frac{1}{2} \dot{\varphi_0}^2 + |\dot{\phi}_2|^2 - \frac{\omega_0^2}{2} \varphi_0^2 - \frac{\omega_2^2}{4} |\phi_2|^2$$
$$H_{\rm LO} = \frac{1}{2} p_0^2 + \frac{1}{4} \left(p_{2r}^2 + p_{2i}^2 \right) + \frac{\omega_0^2}{2} \varphi_0^2 + \frac{\omega_2^2}{4} \left(\phi_{2r}^2 + \phi_{2i}^2 \right)$$

Spectrum

$$E(n_0, n_2, m_l) = \omega_0 \left(n_0 + \frac{1}{2} \right) + \frac{\omega_2}{2} (2n_2 + |m_l| + 1)$$

Leading order yields the band heads

Lagrangian as function of E_x , E_y , $D_t\phi_0$, $D_t\phi_2$, ϕ_0 , ϕ_2 , needs to be formally invariant under SO(2) (axial symmetry only).

Next-to-leading order $\sim O(\xi)$

Lagrangian
$$L_{\text{NLO}} = L_{\text{LO}} + \frac{3}{2}v^2 \left(E_x^2 + E_y^2\right) - 4E_z \text{Im}\left(\dot{\phi}_2 \phi_2^*\right)$$

 $-\sum_{k+2l=3,4} v_{kl} \varphi_0^k |\phi_2|^{2l}$.

Hamiltonian (kinetic energy)

$$H_{\rm NLO} = H_{\rm LO} + \frac{1}{6v^2} \left(p_{\beta}^2 + \frac{1}{\sin^2 \beta} \left[p_{\alpha}^2 + 2p_{\alpha} l_z \cos \beta \right] \right)$$

Spectrum: a rotational band on every vibrational band head

$$E(n_0, n_2, m_l, l) = \omega_0 \left(n_0 + \frac{1}{2} \right) + \frac{\omega_2}{2} (2n_2 + |m_l| + 1)$$

+ $\frac{1}{6v^2} \left(l(l+1) - (2m_l)^2 \right)$

Corrections $\sim \xi$ of band heads due to anharmonicities in the potential neglected.

In next-to-leading order, the results of the rotational-vibrational model are reproduced.