# Short-range and tensor correlations in nuclei

Dynamics and Correlations in Exotic Nuclei (DCEN2011) Mini workshop: Clusters and neutrons in weakly bound systems Yukawa Institute of Theoretical Physics, Kyoto, Japan October 3, 2011

#### Wataru Horiuchi (RIKEN)

Collaborators: Hans Feldmeier, Thomas Neff (GSI) Yasuyuki Suzuki (Niigata, RIKEN)

# Introduction

- "Realistic" nucleon-nucleon force
  - N-N phase shift
  - Deuteron properties
- Coordinate space
  - Short-range repulsion
  - Strong tensor component
- Momentum space
  - High momentum
  - Off diagonal matrix element



Argonne potential (V8')

# Outline

- Purpose of this study
  - Short-range and tensor correlations
    - Low-momentum effective interaction
    - Measurement : (e, e') experiment at JLab(R. Subedi, Science 320, 1476).
    - Saturation properties of nuclear matter
- Approach: Variational calculation with explicitly correlated basis
  - Correlated Gaussian and global vector
  - Stochastic variational method

 $\rightarrow$  "Exact" many-body states

- Results
  - One-body densities
  - Two-body densities for different spin-isospin channels
  - Comparison with the Unitary Correlation Operator Method (UCOM)
- Summary and outlook

#### Variational calculation for many-body systems

Hamiltonian

$$H = \sum_{i=1}^{A} T_i - T_{cm} + \sum_{i < j}^{A} v_{ij} + \left(\sum_{i < j < k}^{A} v_{ijk}\right)$$

 $v_{12} = V_c(r) + V_{\text{Coul.}}(r)P_{1\pi}P_{2\pi} + V_t(r)S_{12} + V_b(r)L \cdot S$ 

Argonne V8' interaction: central, tensor, spin-orbit

Generalized eigenvalue problem

$$\Psi_{JM_J} = \sum_{i=1}^{K} c_i \Psi(\alpha_i)$$

$$\sum_{j=1}^{H} (H_{ij} - EB_{ij})c_j = 0 \quad (i = 1, \dots, K)$$
$$\binom{H_{ij}}{B_{ij}} = \langle \Psi(\alpha_i) | \binom{H}{1} | \Psi(\alpha_j) \rangle$$

**Basis function** 

$$\Psi_{(LS)JM_JTM_T} = \mathcal{A}\left\{ \left[ \psi_L^{(\text{space})} \psi_S^{(\text{spin})} \right]_{JM_J} \psi_{TM_T}^{(\text{isospin})} \right\}$$
$$\psi_{SM_S}^{(\text{spin})} = \left| \left[ \cdots \left[ \left[ \left[ \frac{1}{2} \frac{1}{2} \right]_{S_{12}} \frac{1}{2} \right]_{S_{123}} \right] \cdots \right]_{SM_S} \right\rangle$$

#### Explicitly correlated basis function

Correlated Gaussian **Explicit correlations among particles**  $\exp\left(-\frac{1}{2}ar^{2}\right) \to \exp\left(-\frac{1}{2}\tilde{x}Ax\right) = \exp\left(-\frac{1}{2}\sum_{i,j=1}^{A-1}A_{ij}x_{i}\cdot x_{j}\right) \qquad \mathbf{x}_{1} \qquad \mathbf{x}_{2} \qquad \mathbf{x}_{3}$  $\exp\left(A_{ij}\boldsymbol{x}_i\cdot\boldsymbol{x}_j\right)\sim\sum_n(\boldsymbol{x}_i\cdot\boldsymbol{x}_j)^n\sim\sum_n\left[\mathcal{Y}_{\ell}(\boldsymbol{x}_i)\mathcal{Y}_{\ell}(\boldsymbol{x}_j)\right]_{00}$ **Global vector** Rotational motion with total angular momentum L A-1 $r^{l}Y_{lm}(\hat{\boldsymbol{r}}) \equiv \mathcal{Y}_{lm}(\boldsymbol{r}) \rightarrow \mathcal{Y}_{LM_{L}}(\tilde{\boldsymbol{u}}\boldsymbol{x}) = \mathcal{Y}_{LM_{L}}(\sum u_{i}\boldsymbol{x}_{i})$  $\mathcal{Y}_{LM_L}(u_1x_1 + u_2x_2) = \sum_{k=0}^{L} \sqrt{\frac{4\pi(2L+1)!}{(2\ell+1)!(2L-2\ell+1)!}} \ u_1^{\ell}u_2^{L-\ell}[\mathcal{Y}_{\ell}(x_1)\mathcal{Y}_{L-\ell}(x_2)]_{LM_L}$ 

Global Vector Representation (GVR) Parity (-1)<sup>L1+L2</sup>  $F_{(L_1L_2)LM}(u_1, u_2, A, x) = \exp\left(-\frac{1}{2}\widetilde{x}Ax\right) [\mathcal{Y}_{L_1}(\widetilde{u_1}x)\mathcal{Y}_{L_2}(\widetilde{u_2}x)]_{LM}$ 

### Correlated basis approach

Double Global Vector Representation Y. Suzuki, W.H., M. Orabi, K. Arai, FBS42, 33-72 (2008)

$$F_{(L_1L_2)LM}(u_1, u_2, A, x) = \exp\left(-\frac{1}{2}\widetilde{x}Ax\right) \left[\mathcal{Y}_{L_1}(\widetilde{u_1}x)\mathcal{Y}_{L_2}(\widetilde{u_2}x)\right]_{LM}$$

- Formulation for N particle system
- Matrix elements can analytically be obtained
- Functional form does not change under any coordinate transformation  $y = Tx \implies \widetilde{y}By = \widetilde{x}\widetilde{T}BTx \qquad \widetilde{v}y = \widetilde{T}vx$



Stochastic variational method K. Varga and Y. Suzuki, PRC52, 2885 (1995).

 Examine randomly generated basis and increase (or replace) the number of basis until convergence is reached
 <sup>4</sup>He energy agrees with the benchmark calculation H. Kamada et al., PRC64, 044001 (2001)

#### How to extract correlated information

- Antisymmetrized many-body states Φ
  - Two-body: <sup>2</sup>H(d)
  - Three-body: <sup>3</sup>H(t), <sup>3</sup>He(h)
  - Four-body:  ${}^{4}\text{He}(\alpha)$ ,  ${}^{4}\text{He}(0_{2}^{+})$  ( $\alpha^{*}$ )
- A-body density: all information on correlation
  - Too much information
    - Position or momentum vectors: A
    - Spin-isospin possibilities: 4\*A
  - Two-body correlation
    - -> integrate over A-2 particle degrees of freedom

#### **One-body densities**

Coordinate space

Momentum space



Strongly depends on the system Dilute 3N+N structure in  $\alpha^*$ 

W.H. and Y. Suzuki, PRC78, 034305 (2008)

Size of the system High momentum component

#### Two-body densities

Two-body density

$$\rho_{SM_S,TM_T}^{(2)}(r_1,r_2) = \langle \Phi | \sum_{i < j}^A \delta^3(r_i - r_1) \delta^3(r_j - r_2) \underline{\hat{P}_{ij}^{SM_S} \hat{P}_{ij}^{TM_T}} | \Phi \rangle$$

Two-body density in relative coordinate

Spin (isospin) projector

R

$$\rho_{SM_S,TM_T}^{(2)}(r,R) = \langle \Phi | \sum_{i < j}^{A} \delta^3(r_i - r_j - r) \delta^3(\frac{1}{2}(r_i + r_j) - R) \hat{P}_{ij}^{SM_S} \hat{P}_{ij}^{TM_T} | \Phi \rangle$$

$$\begin{split} \rho_{SM_S,TM_T}^{(\text{rel})}(r) &= \int d\boldsymbol{R} \, \rho_{SM_S,TM_T}^{(2)}(r,\boldsymbol{R}) \\ &= \langle \Phi | \sum_{i < j}^A \delta^3(r_i - r_j - r) \hat{P}_{ij}^{SM_S} \hat{P}_{ij}^{TM_T} \, | \Phi \rangle \end{split}$$

#### Momentum space

$$\rho_{SM_S,TM_T}^{(2)}(k,K) = \langle \Phi | \sum_{i=1}^{A} \delta^3 (\frac{1}{2}(k_i - k_j) - k) \delta^3 (k_i + k_j - K) \hat{P}_{ij}^{SM_S} \hat{P}_{ij}^{TM_T} | \Phi \rangle$$

$$\rho_{SM_S,TM_T}^{(\text{rel})}(k) = \langle \Phi | \sum_{i$$

#### Potential plot (Argonne V8')



# Two-body density (SM<sub>s</sub>=11, T=0)



234

# Two-body density (SM<sub>s</sub>=11, T=1)



### Two-body density (S=0, T=1)

#### S=0, T=1



S=0, T=0 channel -> small components in w. f.

One-to-one correspondence to the potential for all ST channels

Relevance to density functional theory

Y. Suzuki, <u>W.H.</u>, Nucl. Phys. A 818, 188 (2009).

### Universality of short-range correlations Two-body density in coordinate space



Universal behavior at short distances

### Universality of short-range correlation Two-body density in momentum space

Two-body densities in momentum space The same normalization factors are used as these in coordinate space.



Universal behavior at high momenta.

#### **Comparison with UCOM**

#### **Unitary Correlation Operator Method (UCOM)**



### Comparison with UCOM



# Summary and outlook

- Highly correlated many-body states (d, t, h,  $\alpha$ ,  $\alpha^*$ )
  - Ab initio type calculation with the Argonne V8' interaction
    - Correlated Gaussian with global vectors
    - Stochastic variational method
  - One-body densities
    - Quite different : strongly depends on the system
- Two-body densities
  - One-to-one correspondence between two-body potential and density
  - Universality at short distances (< 1 fm) and high momenta (> 3 fm<sup>-1</sup>)
- Comparison with the UCOM
  - Success of low-momentum interaction
  - Three-body correlation
    - Too simple trial wave function (-> no-core shell model, etc)
    - Correlation operator determined in two-body level

Accepted for publication in Phys. Rev. C (2011.9.20), arXiv:1107.4956.

- Outlook
  - Two-body density with two variables

$$\rho_{SM_S,TM_T}^{(2)}(\boldsymbol{r},\boldsymbol{R}) = \langle \Phi | \sum_{i < j}^{A} \delta^3(\boldsymbol{r}_i - \boldsymbol{r}_j - \boldsymbol{r}) \delta^3(\frac{1}{2}(\boldsymbol{r}_i + \boldsymbol{r}_j) - \boldsymbol{R}) \hat{P}_{ij}^{SM_S} \hat{P}_{ij}^{TM_T} | \Phi \rangle$$

More particle systems (A>4)

