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o Condensed State

a cluster structure is expected to emerge near the a-decay threshold energy in N = 4n nuclei.
The 07, state at E, = 7.65 MeV in '2C , a famous 3a cluster state, is called “Hoyle state”.

A novel concept to describe the 0%, state is proposed: oo Condensation.
A. Tohsaki et al., Phys. Rev. Lett. 87, 192501 (2001).
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T.Yamada and P. Schuck, Euro. Phys. J. A 26, 185 (2005).

Mass number

a-condensed state where three alpha particles occupy the lowest s-orbit.
Dilute-gas state of alpha particles. Large RMS.
Does similar a condensed state exist in heavier nuclei?



How should we excite Cluster States?

Various reactions were devoted to excite cluster states.

7 Cluster transfer 7 Capture
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v" Cluster-transfer reaction
® Complex reaction mechanism due to the low incident energy.
@® Small reaction cross section.
® Limited energy resolution.
v Low-energy resonant capture reaction
@ Sensitive above the cluster-emission threshold only.
® Coulomb barrier disturbs the reaction near the threshold.

Inelastic scattering can be a complementary probe.

© Simple reaction mechanism at intermediate energies.
© High resolution measurement is possible.

© Sensitive to the entire E, region.

© Selectivity for the isoscalar natural-parity excitation..



EO Strengths and a Cluster Structure

Large EO strength could be a signature of spatially developed a cluster states.
T. Kawabata et al., Phys. Lett. B 646, 6 (2007).

0%, state in 12C: B(EO; IS) = 1219 fm*
Single Particle Unit: B(EO; IS), , ~ 40 fm*

v' SM-like compact GS w.f. is equivalent to the CM w.f. at SU(3) limit.
v GS contains CM-like component due to possible alpha correlation.

v'SM-like Compact GS.
2
>
EO Operator

/ v'Developed Cluster State

Mon.opole operators gxc1te | T. Yamada et al.,
inter-cluster relative motion. Prog. Theor. Phys. 120, 1139 (2008).

EO strength is a key observable to examine a cluster structure.



Inelastic Alpha Scattering

Inelastic a scattering is a good probe for nuclear excitation strengths.

« Simple reaction mechanism
- Good linearity between do/dQ2 and B(0).

do . 2 A
d—Q(AJ )~ KN|J () B(O)

- Folding model gives a reasonable description of do/dQ.
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We measured inelastic a scattering to extract IS EO strengths
and to search for the a condensed states.



o Condensed States in Heavier N = 4n Nuclei

o, condensed states in 8Be and!2C seem to be
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T. Yamada and P. Schuck,

Energy of dilute Na state increase with N. Phys. Rev. C 69, 024309 (2004).

Noa are confined in Coulomb barrier.

If such na condensed states are formed, they should sequentially decay into
lighter a condensed states by emitting o particles.

a decay measurement could be a probe to search for the oo condensed state.



o Condensed State with Core Nucleus

Possibility of oo condensed states with core nuclei is proposed.

" : . N. Itagaki et al., Phys. Rev. C 75, 037303 (2007).
Attractive potential for o clusters provided agaki €t al., Fhys. Rev. © /o, (2007)

by the core nucleus might stabilize the a
condensed state in heavy nuclei.

Schuck-type wave function for Mg
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The o condensed state 1s
predicted at E.=12.2 MeV
with B(EO; IS) = 168.4 fm*.

The 190 core is expressed by the tetrahedron
configuration of 4a with the relative distance of 1 fm.

A new experiment to search for the o condensed state in *Mg was proposed.



Decay Particles from oo Condensed States

Decay-particle measurement provides structural information.

14,33 440 4 Silicon counter telescopes
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Proton- and alpha-decay
channels open around the
region of interest.

« Complementary information for the EO strength 1s expected.

— o cluster state should prefer to decay into the alpha-decay channel.
— GS in ?°Ne is a well-known a + 'O cluster state.
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Background-free measurement at extremely forward angles

Experiment
Experiment was performed at RCNP, Osaka University.
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Single Folding Model Analysis

Experimental data at RCNP is analyzed by single folding model.

Single folding by phenomenological aN interaction.

| | U,(r) = [ dF'p, (r)V ([T =)
Elastic scattering on *Mg
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Both DI and DD interactions give reasonable descriptions on the elastic scattering.



Discrete States in **Mg

Discrete states in Mg are also analyzed by the single folding model.
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DI gives reasonable results better then DD, especially for the 0t and 3~ states.



Multipole Decomposition Analysis
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Fine structure in AL=0 strengths was observed.



Comparison with ACM

Measured EO strengths near the '°O+2a threshold
were compared with the ACM prediction.

Recent calculation by T. Ichikawa, N. Itagaki et al.

Coupling between the gas-like a condensed w.f.
and the normal cluster w.f. are considered.

Y= chqﬂ +> TP

Normal Cluster o Condensate

The 7th 0" state at —4.267 MeV
— Strong EO excitation with 187.5 fm*.
— Large overlap with the 2o condensed
state around '°O core.

|soscalar Monopole Strength (f m4)

The 9.31-MeV state near 2°Ne + o threshold is
the most probable candidate for the 2a + '°O state.
— Cross section suggests the enhanced radius.
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Decay Particle Measurement

Decay channels to the ground and first excited states in 2°Ne were identified.
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* Proton and alpha decay channels are separated.

07 state at 13.9 MeV near the >C + 12C and
160 + 2a thresholds has a large decay branch
to 2Ne.

 Further analysis is needed to clarify the cluster
structures in 2*Mg.
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Highly Excited Region

6a condensed state was searched for in the highly excited region.
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Phys. Rev. C 69, 024309 (2004).

6o condensed state is expected

at 5 MeV above the 6a threshold.
- E, ~28.5+5=33.5MeV
No significant structure suggesting the 6a
condensed state.
— Several small structures

indistinguishable from the statistical
fluctuation. = Need more statistics.
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Summary of the first part

o Condensed states in 2*Mg were searched.

— Alpha inelastic scattering and decay-particle
measurement 1s a useful tool.

Comparison with the theoretical prediction was done.

— The 9.31-MeV state 1s the most probable candidate of
the 2a condensed state around the 'O core.

— The 13.9-MeV state 1s also a candidate.

— Expected 6a condensed state was not observed.

Analysis 1s still going on.

The results will be reported elsewhere soon.



Discrepancy between DD and DI interactions
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» Discrepancy between DD and DI int. studied in '*C.

» Nuclear structure in *C is well examined.
— Transition densities are taken from electron scattering.

DD int. significantly overestimates EO cross section.
Similar to the *Mg case !!

DI gives better results although DD is commonly used.
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Density dependence plays a crucial role
in the inner region of the Hoyle state.
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Missing Monopole Strength

This problem was recognized as “Missing monopole strength” problem in °C.,

Alpha Scattering:

Electron Scattering:
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Monopole strengths for the Hoyle state
from hadron scattering is 50% smaller than that from electron scattering.
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do/dQ (mb/sr)

Double Folding Model Analysis

Microscopic analysis was done by D. T. Khoa and D. C. Cuong.
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Similar problem is observed in >*Mg.
It 1s not special for the Hoyle state.

D. T. Khoa and D. C. Cuong, Phys. Lett. B 660, 331—338 (2008).

v' CDJLM (modified version of CDM3Y)
v 3aRGM or Breathing Mode (BM)

transition density.
v DWBA or CC (07,

2Jr1 O+2 0+1)

v' Both DWBA and CC systematically
overestimate at all energies.

v' 3aRGM and BM give similar results.

v" Consistent to the previous results.

N, for the o + 2C(0*,) channel was
adjusted to obtain a reasonable CC result
(N;~2.5—3.4).

N, enhances due to the dilute and weakly
bound nature of the Hoyle state??

It 1s a universal problem. It might affect EWSR values of GMR.



Summary of the second part

Discrepancy between DD and DI int. were found.

— DI gives reasonable description, but many
experiments (RCNP, TAMU) were analyzed by using
DD int.

This was recognized as “Missing monopole strengths”
problem in *C.

— Is 1t special for the Hoyle state?
— No!! It 1s observed in the other nuclei.
— EWSR value of GMR might be affected.

Systematic study 1s needed.



