Alpha inelastic scattering and cluster structures in light nuclei

KAWABATA Takahiro Department of Physics, Kyoto University

Contents

- Introduction
 - $-\alpha$ cluster structure in light nuclei.
 - E0 strengths and α cluster structure.
- Search for α Cluster States in ²⁴Mg
 - Folding model calculation.
 - Multipole decomposition analysis
 - Comparison with previous experiments and theoretical models.
 - Decay particle measurement
- Missing monopole strengths
- Summary

α Condensed State

 α cluster structure is expected to emerge near the α -decay threshold energy in N = 4n nuclei.

The 0^+_2 state at $E_x = 7.65$ MeV in ${}^{12}C$, a famous 3α cluster state, is called "Hoyle state".

A novel concept to describe the 0^+_2 state is proposed: α Condensation.

 α -condensed state where three alpha particles occupy the lowest s-orbit. Dilute-gas state of alpha particles. Large RMS. Does similar α condensed state exist in heavier nuclei?

How should we excite Cluster States?

Various reactions were devoted to excite cluster states.

✓ Cluster-transfer reaction

Cluster transfer

☺ Complex reaction mechanism due to the low incident energy.

Capture

- \odot Small reaction cross section.
- $\ensuremath{\mathfrak{S}}$ Limited energy resolution.
- ✓ Low-energy resonant capture reaction
 - $\ensuremath{\mathfrak{S}}$ Sensitive above the cluster-emission threshold only.
 - $\ensuremath{\mathfrak{S}}$ Coulomb barrier disturbs the reaction near the threshold.

Inelastic scattering can be a complementary probe.

- © Simple reaction mechanism at intermediate energies.
- [©] High resolution measurement is possible.
- \bigcirc Sensitive to the entire E_x region.
- © Selectivity for the isoscalar natural-parity excitation..

E0 Strengths and α Cluster Structure

Large E0 strength could be a signature of spatially developed α cluster states. T. Kawabata *et al.*, Phys. Lett. B **646**, 6 (2007).

> 0^+_2 state in ¹²C: B(E0; IS) = $121 \pm 9 \text{ fm}^4$ Single Particle Unit: B(E0; IS)_{s. p.} ~ 40 fm⁴

✓ SM-like compact GS w.f. is equivalent to the CM w.f. at SU(3) limit.
 ✓ GS contains CM-like component due to possible alpha correlation.

E0 strength is a key observable to examine α cluster structure.

Inelastic Alpha Scattering

Inelastic α scattering is a good probe for nuclear excitation strengths.

- Simple reaction mechanism
 - Good linearity between $d\sigma/d\Omega$ and $B(\hat{o})$.

$$\frac{d\sigma}{d\Omega}(\Delta J^{\pi}) \approx KN \left| J(q) \right|^2 B(\widehat{O})$$

- Folding model gives a reasonable description of $d\sigma/d\Omega.$
- Selectivity for the $\Delta T = 0$ and natural-parity transitions.
- Multiple decomposition analysis is useful to separate ΔJ^{π} . $\frac{d\sigma}{d\Omega}^{exp} = \sum_{\Lambda J^{\pi}} A(\Delta J^{\pi}) \frac{d\sigma}{d\Omega} (\Delta J^{\pi})^{calc}$

We measured inelastic α scattering to extract IS E0 strengths and to search for the α condensed states.

α Condensed States in Heavier N = 4n Nuclei

If such n α condensed states are formed, they should sequentially decay into lighter α condensed states by emitting α particles.

 α decay measurement could be a probe to search for the α condensed state.

α Condensed State with Core Nucleus

Possibility of α condensed states with core nuclei is proposed.

α

Attractive potential for α clusters provided by the core nucleus might stabilize the α condensed state in heavy nuclei.

Schuck-type wave function for ²⁴Mg

$$\Phi = \mathcal{A}\prod_{i=1}^{6} d\overrightarrow{R_{i}} G_{i}(\overrightarrow{R_{i}}) \exp\left[-\overrightarrow{R_{i}}^{2} / \sigma^{2}\right]$$

 \mathcal{A} : Antisymmetrizer

 $G_i(\overline{R_i})$: Wave function for the i-th α cluster $\overline{R_i}$: i-th α -cluster center (Randamly generated)

 σ : Oscillator parameter for the α condensation

The ¹⁶O core is expressed by the tetrahedron configuration of 4α with the relative distance of 1 fm.

N. Itagaki et al., Phys. Rev. C 75, 037303 (2007).

The α condensed state is predicted at E_x=12.2 MeV with B(E0; IS) = 168.4 fm⁴.

A new experiment to search for the α condensed state in ²⁴Mg was proposed.

Decay Particles from α Condensed States

Decay-particle measurement provides structural information.

- Complementary information for the E0 strength is expected.
 - $-\alpha$ cluster state should prefer to decay into the alpha-decay channel.
 - -GS in ²⁰Ne is a well-known α + ¹⁶O cluster state.

Experiment

Experiment was performed at RCNP, Osaka University.

Background-free measurement at extremely forward angles

Single Folding Model Analysis

Experimental data at RCNP is analyzed by single folding model.

Single folding by phenomenological αN interaction. $U_{0}(r) = \int d\vec{r}' \rho_{0}(r') V(|\vec{r} - \vec{r}'|)$ $V(|\vec{r} - \vec{r}'|, \rho_0(r')) = -V(1 + \beta_V \rho_0(r')^{2/3}) \exp(-|\vec{r} - \vec{r}'|/\alpha_V)$ $-iW(1+\beta_{W}\rho_{0}(r')^{2/3})\exp(-|\vec{r}-\vec{r}'|/\alpha_{W})$ ► GS densities are taken from electron scattering assuming $\rho_{0p} = \rho_{0n}$. \succ Two choices of αN interaction to fit $d\sigma/d\Omega$. Density Independent (DI) V = 13.1 MeV, W = 8.8 MeV, $\alpha_{\rm v} = \alpha_{\rm w} = 5.03$ fm, $\beta_{\rm v} = \beta_{\rm w} = 0$ Density Dependent (DD) V = 28.8 MeV, W = 19.6 MeV, $\alpha_{\rm W} = \alpha_{\rm W} = 4.05 \, {\rm fm}, \, \beta_{\rm W} = \beta_{\rm W} = -1.9$

Both DI and DD interactions give reasonable descriptions on the elastic scattering.

Discrete States in ²⁴Mg

Discrete states in ²⁴Mg are also analyzed by the single folding model.

DI gives reasonable results better then DD, especially for the 0⁺ and 3⁻ states.

Multipole Decomposition Analysis

Comparison with ACM

Measured E0 strengths near the ${}^{16}O+2\alpha$ threshold were compared with the ACM prediction.

 Recent calculation by T. Ichikawa, N. Itagaki et al.
 120

 Coupling between the gas-like α condensed w.f.
 100

 and the normal cluster w.f. are considered.
 80

$$\Psi = \sum_{j} c_{nc}^{j} \Psi_{nc}^{j} + \sum_{\sigma} c^{\sigma} \Psi^{\sigma}$$

Normal Cluster α Condensate

The 7th 0^+ state at -4.267 MeV

- Strong E0 excitation with 187.5 fm⁴.
- Large overlap with the 2α condensed state around ¹⁶O core.

The 9.31-MeV state near ²⁰Ne + α threshold is the most probable candidate for the 2 α + ¹⁶O state.

- Cross section suggests the enhanced radius.

Decay Particle Measurement

Decay channels to the ground and first excited states in ²⁰Ne were identified.

Highly Excited Region

6α condensed state was searched for in the highly excited region.

- 6α condensed state is expected at 5 MeV above the 6α threshold.
 - $E_x \sim 28.5 + 5 = 33.5 \text{ MeV}$
- No significant structure suggesting the 6α condensed state.
 - Several small structures indistinguishable from the statistical fluctuation. → Need more statistics.

Summary of the first part

 α Condensed states in ^{24}Mg were searched.

 Alpha inelastic scattering and decay-particle measurement is a useful tool.

Comparison with the theoretical prediction was done.

- The 9.31-MeV state is the most probable candidate of the 2α condensed state around the ¹⁶O core.
- The 13.9-MeV state is also a candidate.
- Expected 6α condensed state was not observed.

Analysis is still going on.

The results will be reported elsewhere soon.

Discrepancy between DD and DI interactions

- Discrepancy between DD and DI int. studied in ¹²C.
 Nuclear structure in ¹²C is well examined.
 - Transition densities are taken from electron scattering.

DD int. significantly overestimates E0 cross section. Similar to the ²⁴Mg case !!

Density dependence plays a crucial role in the inner region of the Hoyle state.

Missing Monopole Strength

This problem was recognized as "Missing monopole strength" problem in ¹²C.

Monopole strengths for the Hoyle state from hadron scattering is 50% smaller than that from electron scattering.

Double Folding Model Analysis

Microscopic analysis was done by D. T. Khoa and D. C. Cuong.

However....,

Similar problem is observed in ²⁴Mg. It is not special for the Hoyle state.

- D. T. Khoa and D. C. Cuong, Phys. Lett. B 660, 331-338 (2008).
- ✓ CDJLM (modified version of CDM3Y)
- 3αRGM or Breathing Mode (BM) transition density.
- ✓ DWBA or CC $(0^+_1 2^+_1 0^+_2 0^+_1)$
- ✓ Both DWBA and CC systematically overestimate at all energies.
- ✓ $3\alpha RGM$ and BM give similar results.
- \checkmark Consistent to the previous results.
- N_I for the α + ¹²C(0⁺₂) channel was adjusted to obtain a reasonable CC result (N_I ~ 2.5—3.4).
- *N_I* enhances due to the dilute and weakly bound nature of the Hoyle state??

It is a universal problem. It might affect EWSR values of GMR.

Summary of the second part

Discrepancy between DD and DI int. were found.

- DI gives reasonable description, but many experiments (RCNP, TAMU) were analyzed by using DD int.
- This was recognized as "Missing monopole strengths" problem in ¹²C.
 - Is it special for the Hoyle state?
 - No!! It is observed in the other nuclei.
 - EWSR value of GMR might be affected.

Systematic study is needed.