# Cluster-gas-like states and monopole excitations

T. Yamada

# Cluster-gas-like states and monopole excitations

- Isoscalar monopole excitations in light nuclei
- Cluster-gas-likes states: <sup>12</sup>C, <sup>16</sup>O, <sup>11</sup>B, <sup>13</sup>C

(maybe skipped here) Funaki's talk

#### **Outline of my talk**

- **1. Introduction**
- 2. IS monopole strengths in light nuclei
  - Typical case : <sup>16</sup>O
  - **RPA and SRPA calculations, compared with Exp.**
- 3.  $4\alpha$  OCM for 0+ states in <sup>16</sup>O

(OCM=Orthogonality Condition Model)

- **3. OCM energy weighted sum rule of IS monopole transition**
- 4. IS monopole strength function with  $4\alpha$  OCM, compared with Exp.
- 6. Emphasize two features of IS monopole excitations.
- 7. Dual nature of <sup>16</sup>O ground state.
- 8. Summary

# Isoscalar Monopole Excitation ↔ density fluctuation <u>Typical example</u> IS-GMR (heavy, medium-heavy nuclei)





collective motion with coherent 1p-1h states

# IS-GMR is well reproduced by RPA cal.

<sup>208</sup>Pb: RPA

Blaizot, Gogny, Grammticos, NPA(1976)

• Light Nuclei (p-, sd-shell,,,)

**Isoscalar monopole strengths are fragmented.** 

For example, <sup>16</sup>O, (<sup>12</sup>C, <sup>11</sup>B, <sup>13</sup>C, <sup>24</sup>Mg,...)
IS-monopole response fun. of <sup>16</sup>O(α,α')
(i) discrete peaks at E<sub>x</sub> ≤ 15 MeV

~20% of EWSR

large *M*(E0) states ⇔ cluster states

(ii) three-bump structure : *E*=18, 23, 30 MeV

# IS Monopole Strength Function of <sup>16</sup>O Exp. vs Cal.

#### $^{16}O(\alpha, \alpha')$



Exp. condition:  $E_x > 10$  MeV

Exp: histogram Lui et al., PRC 64 (2001)

discrete peaks at *E*x≤15 MeV three bumps at 18, 23, 30 MeV

<u>Cal: real line</u> Relativistic RPA Ma et al., PRC 55 (1997) <u>Multiplied by 0.25</u> Shifted by 4.2 MeV

Not well reproduced by RRPA cal.

# Non-rela. Mean-field calculations of IS-monopole strengths for <sup>16</sup>O

# (1) **RPA calculation: 1p-1h excitations** Blaizot et al., NPA265 (1976)

(2) Second-order RPA (SRPA) calculations:

- : 1p1h + 2p2h
- i) Drozdz et al., PR197(1980): D1-force
- ii) Papakonstantino et al., PLB671(2009): UCOM

iii) Gambacurta et al., PRC81(2010) : full SRPA calculation with Skyrme force





(1) Reproduction of 3-bump structure,

but the energy positions are by about 3-5 MeV higher than the data.

(2) No reproduction of discrete peaks at  $E_x \leq 15 \text{ MeV}$ 





- (1) Gross structure at higher energy region (Ex > 18 MeV), i.e. 3-bump structure, is reproduced by SRPA calculation.
- (2) Discrete peaks at  $E_x \leq 15$  MeV are not reproduced well. In particular, the transition to  $2^{nd}$  0+ state ( $E_x = 6.1$  MeV) is not seen in SRPA (+RPA) calculation.

|    |            |             | Experiment |                             |            | 4α ΟϹΜ    |                                    |            |  |
|----|------------|-------------|------------|-----------------------------|------------|-----------|------------------------------------|------------|--|
|    |            | Ex<br>[MeV] | R<br>[fm]  | M(E0)<br>[fm <sup>2</sup> ] | Г<br>[MeV] | R<br>[fm] | <b>M(E0)</b><br>[fm <sup>2</sup> ] | Г<br>[MeV] |  |
| 0- | <b>+</b> 1 | 0.00        | 2.71       |                             |            | 2.7       |                                    |            |  |
| 0  | +<br>2     | 6.05        |            | 3.55                        |            | 3.0       | 3.9                                |            |  |
| 0- | +<br>3     | 12.1        |            | 4.03                        |            | 3.1       | 2.4                                |            |  |
| 0- | +4         | 13.6        |            | no data                     | 0.6        | 4.0       | 2.4                                | 0.60       |  |
| 0- | +<br>5     | 14.0        |            | 3.3                         | 0.185      | 3.1       | 2.6                                | 0.20       |  |
| 0- | <b>+</b> 6 | 15.1        |            | no data                     | 0.166      | 5.6       | 1.0                                | 0.14       |  |

over 15% of total EWSR

20% of total EWSR

#### Experiment



- (1) Gross structure at higher energy region (Ex > 18 MeV), i.e. 3-bump structure, is reproduced by SRPA calculation.
- (2) Discrete peaks at  $E_x \leq 15$  MeV are not reproduced well. In particular, the transition to  $2^{nd}$  0+ state ( $E_x = 6.1$  MeV) is not seen in SRPA (+RPA) calculation.

#### **<u>RPA and SRPA calculations for 160</u>**

- (1) Gross structure at higher energy region, i.e. 3-bump structure, is reproduced by RPA and SPRA calculations.
- (2) Discrete peaks at E<sub>x</sub>≤15 MeV are not reproduced well. In particular, the transition to 2<sup>nd</sup> 0+ state (E<sub>x</sub>=6.1 MeV) is not seen in SRPA and RPA calculations.

This peak should exit sharply at  $E_x$ =6.1 MeV because  $\Gamma \le 1$  eV.

# **Purposes of my talk**

- What kind of states contribute to the discrete peaks?
- Recently,  $4\alpha$  OCM succeeded in describing the structure of the lowest six 0+ states up to  $4\alpha$  threshold ( $E_x \approx 15$  MeV). Funaki's talk
- We will study the IS monopole strength function with the  $4\alpha$  OCM.

# **Cluster-model analyses of <sup>16</sup>O**

- α+<sup>12</sup>C OCM Y. Suzuki, PTP55 (1976), 1751
- $\alpha + {}^{12}C GCM$

M. Libert-Heinemann, D. Bay et al., NPA339 (1980)

•  $4\alpha \text{ THSR wf}$  Not include  $\alpha + {}^{12}C$  configuration.

Tohsaki, Horiuchi, Schuck, Roepke, PRL87 (2001) Funaki, Yamada et al., PRC82(2010)

•  $4\alpha$  OCM  $4\alpha$ -gas,  $\alpha$  + <sup>12</sup>C, shell-model-like configurations

Funaki, Yamada et al., PRL101 (2008)

Reproduction of lowest six 0+ states up to  $4\alpha$  threshold (15MeV)

# $\frac{^{16}O = \alpha + ^{12}C \text{ cluster model}}{^{16}O = \alpha + ^{12}C \text{ cluster model}}$

Y. Suzuki, PTP55 (1976), 1751

#### **Odd-parity**



**Even-parity** 



# **OCM (orthogonality condition model)**

- An approximation of RGM (resonating group method)
- Relative motions among c.o.m. of clusters are exactly solved under an orthogonality condition arising from Pauli-Blocking effects

For example of  $n\alpha$  system,

S. Sato, Prog. Thor. Phys. 40 (1968)

**Fermion w.f.**:  $\Phi^{(F)} = A \left\{ \prod_{i=1}^{N} \phi_{\alpha_i}^{\text{int}} \chi^{rel} \right\}, \qquad (H-E) \Phi^{(F)} = 0, \qquad \left\langle \Phi^{(F)} \middle| \Phi^{(F)} \right\rangle = 1,$  $(\mathsf{H} - EN)\chi^{rel} = 0, \qquad \langle \chi^{rel} | N | \chi^{rel} \rangle = 1,$ **RGM eq.**:  $\boldsymbol{\alpha} \text{-cluster w.f.:} \quad \Phi^{(B)} = \sqrt{N} \chi^{rel}, \qquad \left(\frac{1}{\sqrt{N}} H \frac{1}{\sqrt{N}} - E\right) \Phi^{(B)} = 0, \qquad \left\langle \Phi^{(B)} \middle| \Phi^{(B)} \right\rangle = 1,$ **Approximation:**  $\frac{1}{\sqrt{N}}H\frac{1}{\sqrt{N}} \Rightarrow T + \sum_{i < j} V_{2\alpha}^{eff}(i, j) + \sum_{i < j < k} V_{3\alpha}^{eff}(i, j, k) = T + V^{eff}$  Orthogonality condition **OCM equation:**  $(T + V^{eff} - E)\Phi^{(B)} = 0$  with  $\langle u_F | \Phi^{(B)} \rangle = 0$ ,  $\langle \Phi^{(B)} | \Phi^{(B)} \rangle = 1$  $u_F$ : Pauli forbidden states,  $N u_F = 0$  or  $A \left\{ \prod_{i=1}^{N} \phi_{\alpha_i}^{int} u_F \right\} = 0$  $\Phi^{(B)}$ : Symmetrized w.f. with relative (Jacobi) coordinates

#### Easy to formulate $2\alpha$ +t OCM and $3\alpha$ +n OCM based on GEM

## Framework of $4\alpha$ OCM

Total w.f. : internal w.f.s of  $\alpha$  clusters × relative w.f.

$$\tilde{\Psi}(J^{\pi}) = \phi(\alpha_1)\phi(\alpha_2)\phi(\alpha_3)\phi(\alpha_4) \times \Psi(J^{\pi}).$$

 $\langle u_F | \Psi(J^{\pi}) \rangle = 0$ : Orthogonality condition arising from Paul-blocking effects: i.e. orthogonal to  $\mathcal{U}_F$  (Pauli-forbidden states)

 $\phi(lpha): \ (0s)^4$ 

Hamiltonian for  $\Psi(J^{\pi})$ : 4-body Hamiltonian

$$\begin{split} H_{\text{OCM}} &= \sum_{i=1}^{4} T_i - T_{cm} + \sum_{i < j}^{4} \left[ V_{2\alpha}^{(N)}(i, j) + V_{2\alpha}^{(\text{Coul})}(i, j) \right] \\ &+ \sum_{i < j < k}^{4} V_{3\alpha}(i, j, k) + V_{4\alpha}(1, 2, 3, 4) \\ & \text{2}\alpha \text{ potential: phase shifts} \\ & \text{Energy spectra of } ^{12}\text{C}(0+, 2+, 4+, 3-, 1-) \\ & \text{Energy of } ^{16}\text{O g.s.} \end{split}$$

#### How to solve 4-body problem with orthogonality condition

**Combing Gaussian Expansion Method (GEM) and OCM** 

**GEM** (Gaussian Expansion Method):

Numerical precision is equivalent to Faddeev-Yakubousky eq. for <sup>4</sup>He = 4-body problem with realistic NN forces

> Kamimura: PRA38(1988), Hiyama, Kino, Kamimura: PPNP51(2003), Kamada et al.: PRC64(2001)

**GEM+OCM: Structure study of Light Hypernuclei** 

Hiyama, Yamada: PPNP63(2009)



|                                    |                         | Experimental<br>data |                           |            |  | $4\alpha  {\rm OCM}$ |                       |            |
|------------------------------------|-------------------------|----------------------|---------------------------|------------|--|----------------------|-----------------------|------------|
|                                    | E <sub>x</sub><br>[MeV] | R<br>[fm]            | M(E0)<br>[fm²]            | Г<br>[MeV] |  | R<br>[fm]            | <b>M(E0)</b><br>[fm²] | Г<br>[MeV] |
| <b>0</b> + <sub>1</sub>            | 0.00                    | 2.71                 |                           |            |  | 2.7                  |                       |            |
| <b>0</b> <sup>+</sup> <sub>2</sub> | 6.05                    |                      | 3.55                      |            |  | 3.0                  | 3.9                   |            |
| <b>0</b> <sup>+</sup> <sub>3</sub> | 12.1                    |                      | 4.03                      |            |  | 3.1                  | 2.4                   |            |
| <b>0</b> <sup>+</sup> <sub>4</sub> | 13.6                    |                      | no data                   | 0.6        |  | 4.0                  | 2.4                   | 0.60       |
| <b>0</b> + <sub>5</sub>            | 14.0                    |                      | 3.3                       | 0.185      |  | 3.1                  | 2.6                   | 0.20       |
| <b>0</b> + <sub>6</sub>            | 15.1                    |                      | no data                   | 0.166      |  | 5.6                  | 1.0                   | 0.14       |
|                                    |                         |                      | over 15%<br>of total EWSR |            |  | 20%<br>of total EWSR |                       |            |

#### **Single-particle IS-monopole strength**

 $M(E0) \sim \langle u_{\rm f} / r^2 / u_{\rm i} \rangle \sim (3/5) \times R^2 = 5.4 \, {\rm fm}^2$ 

#### (using R = nuclear radius = 3 fm)

Uniform-density approximation for  $u_f(r)$  and  $u_i(r)$ 

$$u(r) = (3/R^3)^{1/2} \text{ for } \theta \le r \le R$$
  
$$u(r) = \theta \text{ for } R < r$$

#### 4α OCM calculation





Shifted by 4.2 MeV

# IS monopole strength function of <sup>16</sup>O

# **Monopole Strength Function**

$$S(E) = \sum_{n} \delta(E - E_n) |\langle \mathbf{0}_n^+ | \mathcal{O} | \mathbf{0}_1^+ \rangle |^2, \quad \mathcal{O} = \sum_{i=1}^{10} (\mathbf{r}_i - \mathbf{R}_{\rm cm})^2$$

 $R(E) = \langle 0_1^+ | \frac{U'U}{E - H + i\epsilon} | 0_1^+ \rangle, \quad |\mathbf{0}_{\mathbf{n}}^+ \rangle: \text{ resonance state with } E_{\mathbf{n}} - i\Gamma_{\mathbf{n}}/2$ 

$$S(E) = -\frac{1}{\pi} \operatorname{Im}[R(E)]$$
  
=  $\frac{1}{\pi} \sum_{n} \frac{\Gamma_n / 2}{(E - E_n)^2 + (\Gamma_n / 2)^2} |M(0_n^+ - 0_1^+)|^2$ 

**IS-monopole m.e.:**  $M(0_n^+ - 0_1^+) = \langle 0_n^+ | \mathcal{O} | 0_1^+ \rangle$ 

Energy weighted sum rule (total-EWSR): rms radius of <sup>16</sup>O

$$\left|\sum_{n} (E_{n} - E_{1}) \left| M(0_{n}^{+} - 0_{1}^{+}) \right|^{2} = \frac{2\hbar^{2}}{m} \times 16 \times R^{2},\right|$$

$$R = \sqrt{\frac{1}{16}} \left\langle 0_{1}^{+} \right| \sum_{i=1}^{16} (\mathbf{r}_{i} - \mathbf{R}_{cm})^{2} \left| 0_{1}^{+} \right\rangle}$$

10

# Energy weighted sum rule within 4α OCM (OCM-EWSR)

# 4α OCM and OCM-EWSR

ά

X

Total w.f. : internal w.f.s of  $\alpha$  clusters × relative w.f

 $\tilde{\Psi}(J^{\pi}) = \phi(\alpha_1)\phi(\alpha_2)\phi(\alpha_3)\phi(\alpha_4) \times \Psi(J^{\pi}).$ 

#### IS monopole matrix element

$$M^{\text{OCM}}(0_n^+ - 0_1^+) = \langle \tilde{\Psi}(0_n^+) | \sum_{i=1}^{16} (\boldsymbol{r}_i - \boldsymbol{R}_{\text{cm}})^2 | \tilde{\Psi}(0_1^+) \rangle,$$

#### **Interesting characters of IS monopole operator**



# 4α OCM and OCM-EWSR

ά

X

Total w.f. : internal w.f.s of  $\alpha$  clusters × relative w.f

 $\tilde{\Psi}(J^{\pi}) = \phi(\alpha_1)\phi(\alpha_2)\phi(\alpha_3)\phi(\alpha_4) \times \Psi(J^{\pi}).$ 

#### IS monopole matrix element

$$M^{\text{OCM}}(0_n^+ - 0_1^+) = \langle \tilde{\Psi}(0_n^+) | \sum_{i=1}^{16} (\boldsymbol{r}_i - \boldsymbol{R}_{\text{cm}})^2 | \tilde{\Psi}(0_1^+) \rangle,$$



# $4\alpha$ OCM and OCM-EWSR

Total w.f. : internal w.f.s of  $\alpha$  clusters × relative w.f.

 $\tilde{\Psi}(J^{\pi}) = \phi(\alpha_1)\phi(\alpha_2)\phi(\alpha_3)\phi(\alpha_4) \times \Psi(J^{\pi}). \qquad \phi(\alpha): \ (0s)^4$ 

EWSR of IS monopole transition in  $4\alpha$  OCM: OCM-EWSR

$$\sum_{n} (E_{n} - E_{1}) |M^{\text{OCM}}(0_{n}^{+} - 0_{1}^{+})|^{2} = \frac{1}{2} \langle \Psi(0_{1}^{+}) | [\mathcal{O}_{\text{OCM}}, [\mathcal{H}, \mathcal{O}_{\text{OCM}}] | \Psi(0_{1}^{+}) \rangle,$$
$$O_{\text{OCM}} = \sum_{k=1}^{4} 4(\mathbf{R}_{\alpha_{k}} - \mathbf{R}_{\text{cm}})^{2},$$

# $4\alpha$ OCM and OCM-EWSR Total w.f. : internal w.f.s of $\alpha$ clusters $\times$ relative w.f. $\tilde{\Psi}(J^{\pi}) = \phi(\alpha_1)\phi(\alpha_2)\phi(\alpha_3)\phi(\alpha_4) \times \Psi(J^{\pi}).$ $\phi(lpha): \ (0s)^4$ EWSR of IS monopole transition in $4\alpha$ OCM: OCM-EWSR $\sum (E_n - E_1) |M^{\text{OCM}}(0_n^+ - 0_1^+)|^2 = \frac{1}{2} \langle \Psi(0_1^+) | [\mathcal{O}_{\text{OCM}}, [\mathcal{H}, \mathcal{O}_{4}_{\text{OCM}}] | \Psi(0_1^+) \rangle,$ $O_{\text{OCM}} = \sum_{k=1}^{4} 4(\mathbf{R}_{\alpha_{k}} - \mathbf{R}_{\text{cm}})^{2},$ $= \frac{2\hbar^{2}}{m} \langle \Psi(0_{1}^{+}) | \sum_{k=1}^{4} 4(\mathbf{R}_{\alpha_{k}} - \mathbf{R}_{\text{cm}})^{2} | \Psi(0_{1}^{+}) \rangle,$ $= \frac{2\hbar^2}{2} \times 16 \times (R^2 - R(\alpha)^2) \quad \textbf{\leftarrow OCM-EWSR}$ where $R = \sqrt{\frac{1}{16}} \langle 0_1^+ | \sum_{i=1}^{16} (\mathbf{r}_i - \mathbf{R}_{cm})^2 | 0_1^+ \rangle$ : **r.m.s radius of <sup>16</sup>O**

 $R(\alpha)$ : r.m.s radius of  $\alpha$ -particle

## 4α OCM and OCM-EWSR

# Ratio of OCM-EWSR to total EWSR: $\frac{\text{OCM-EWSR}}{\text{total EWSR}} = 1 - \left(\frac{R(\alpha)}{R}\right)^2 = 1 - \left(\frac{1.47}{2.58}\right)^2 = 0.68.$ 4 $\alpha$ OCM shares over 60% of the total EWSR value.

( c.f. α+<sup>12</sup>C OCM : 31%)

This is one of important reasons that  $4\alpha$  OCM works rather well in reproducing IS monopole transitions at low-energy region of <sup>16</sup>O.

OCM-EWSR: 
$$\sum_{n} (E_{n} - E_{1}) \left| M^{\text{OCM}} (0_{n}^{+} - 0_{1}^{+}) \right|^{2} = \frac{2\hbar^{2}}{m} \times 16 \times \left[ R^{2} - R(\alpha)^{2} \right]$$
  
total EWSR: 
$$\sum_{n} (E_{n} - E_{1}) \left| M(0_{n}^{+} - 0_{1}^{+}) \right|^{2} = \frac{2\hbar^{2}}{m} \times 16 \times R^{2}$$

Yamada et al.

# IS monopole strength function S(E)within $4\alpha$ OCM framework

# Monopole Strength Function with $4\alpha$ OCM

$$S(E) = \sum_{n} \delta(E - E_n) |\langle \mathbf{0}_n^+ | \mathcal{O} | \mathbf{0}_1^+ \rangle |^2, \quad \mathcal{O} = \sum_{i=1}^{16} (\mathbf{r}_i - \mathbf{R}_{\rm cm})^2$$

 $R(E) = \langle 0_1^+ | \frac{\mathcal{O}^* \mathcal{O}}{E - H + i\epsilon} | 0_1^+ \rangle, \quad |\mathbf{0}_{\mathbf{n}}^+ \rangle: \text{ resonance state with } E_{\mathbf{n}} - i\Gamma_{\mathbf{n}}/2$ 

$$S(E) = -\frac{1}{\pi} \operatorname{Im}[R(E)]$$
  
=  $\frac{1}{\pi} \sum_{n} \frac{\Gamma_n / 2}{(E - E_n)^2 + (\Gamma_n / 2)^2} |M(0_n^+ - 0_1^+)|^2$ 

 $M(0_n^+ - 0_1^+) = \langle 0_n^+ | \mathcal{O} | 0_1^+ \rangle$  : calculated by  $4\alpha$  OCM

$$\Gamma_n = \sqrt{\Gamma_n (OCM)^2 + (exp. resolution)^2}$$
 50 keV

 $\mathbf{E}_{\mathbf{n}}$  : experimental energy of *n*-th 0+ state

|                                    |             | Experiment |                           |            |   | $4\alpha \text{ OCM}$ |                       |            |  |
|------------------------------------|-------------|------------|---------------------------|------------|---|-----------------------|-----------------------|------------|--|
|                                    | Ex<br>[MeV] | R<br>[fm]  | M(E0)<br>[fm²]            | Г<br>[MeV] |   | R<br>[fm]             | <b>M(E0)</b><br>[fm²] | Г<br>[MeV] |  |
| <b>0</b> + <sub>1</sub>            | 0.00        | 2.71       |                           |            |   | 2.7                   |                       |            |  |
| <b>0</b> <sup>+</sup> <sub>2</sub> | 6.05        |            | 3.55                      |            |   | 3.0                   | 3.9                   |            |  |
| <b>0</b> <sup>+</sup> <sub>3</sub> | 12.1        |            | 4.03                      |            |   | 3.1                   | 2.4                   |            |  |
| <b>0</b> <sup>+</sup> <sub>4</sub> | 13.6        |            | no data                   | 0.6        |   | 4.0                   | 2.4                   | 0.60       |  |
| <b>0</b> <sup>+</sup> <sub>5</sub> | 14.0        |            | 3.3                       | 0.185      | ļ | 3.1                   | 2.6                   | 0.20       |  |
| <b>0</b> <sup>+</sup> <sub>6</sub> | 15.1        |            | no data                   | 0.166      |   | 5.6                   | 1.0                   | 0.14       |  |
|                                    |             |            | over 15%<br>of total EWSR |            |   |                       | 20%<br>of total I     | EWSR       |  |



It is likely to exist discrete peaks on a small bump at  $E_x < 15 \text{MeV}$ This small bump may come from the contribution from continuum states of  $\alpha$ +<sup>12</sup>C





# **Dual nature of ground state of <sup>16</sup>O**

mean-field character and  $\alpha$ -clustering character

#### Dominance of doubly-closed-shell structure: $(0s)^4(0p)^{12} = SU(3)(0,0)$

 $(\lambda,\mu)$ 

Cluster-model calculations:  $4\alpha$  OCM,  $4\alpha$  THSR,  $\alpha$ +<sup>12</sup>C OCM,... Mean-field calculations : RPA, QRPA, RRPA,.....

Supported by no-core shell model calculations: Dytrych et al., PRL98 (2007)

Bayman & Bohr, NPA9 (1958/59)

Bayman-Bohr theorem : <u>SU(3)[f]( $\lambda \mu$ ) is equivalent to "a cluster-model wf"</u>

Doubly-closed-shell w.f,  $(0s)^4(0p)^{12}$ , is mathematically equivalent to a single  $\alpha$ -cluster w.f.

This means that the ground state w.f. of <sup>16</sup>O originally has an <u>*a*-clustering degree of freedom</u> together with <u>mean-filed-type</u> degree of free dom.

We call dual nature of g.s.

**Bayman-Bohr theorem** 

Nucl. Phys. 9, 596 (1958/1959)

$$\frac{1}{\sqrt{16!}} \det \left| (0s)^4 (0p)^{12} \right| \times \left[ \phi_{cm}(\mathbf{R}_{cm}) \right]^{-1} : \text{closed shell}$$

$$= N_0 \sqrt{\frac{12!4!}{16!}} A \left\{ \left[ \underbrace{u_{40}(\xi_3, 3\nu)}_{I=0} \phi_{L=0}({}^{12}\mathrm{C}) \right]_{J=0} \phi(\alpha) \right\}$$

$$= N_2 \sqrt{\frac{12!4!}{16!}} A \left\{ \left[ \underbrace{u_{42}(\xi_3, 3\nu)}_{I=2} \phi_{L=2}({}^{12}\mathrm{C}) \right]_{J=0} \phi(\alpha) \right\}$$

$$= N_2 \sqrt{\frac{12!4!}{16!}} A \left\{ \left[ \underbrace{u_{42}(\xi_3, 3\nu)}_{I=2} \phi_{L=2}({}^{12}\mathrm{C}) \right]_{J=0} \phi(\alpha) \right\}$$

$$= N_2 \sqrt{\frac{12!4!}{16!}} A \left\{ \left[ \underbrace{u_{42}(\xi_3, 3\nu)}_{I=2} \phi_{L=2}({}^{12}\mathrm{C}) \right]_{J=0} \phi(\alpha) \right\}$$

 $\rightarrow$  G.S. has mean-field-type and  $\alpha$ -cluster degrees of freedom.

We call dual nature of g.s.

**Bayman-Bohr theorem** 

Nucl. Phys. 9, 596 (1958/1959)

$$\frac{1}{\sqrt{16!}} \det \left| (0s)^4 (0p)^{12} \right| \times \left[ \phi_{cm}(\mathbf{R}_{cm}) \right]^{-1} : \text{closed shell}$$

$$= N_0 \sqrt{\frac{12!4!}{16!}} A \left\{ \left[ \underbrace{u_{40}(\xi_3, 3\nu)\phi_{L=0}({}^{12}\text{C})}_{\text{relative wf (S-wave)}} - \phi(\alpha) \right\} \\ = N_2 \sqrt{\frac{12!4!}{16!}} A \left\{ \left[ \underbrace{u_{42}(\xi_3, 3\nu)\phi_{L=2}({}^{12}\text{C})}_{\text{relative wf (D-wave)}} - \phi(\alpha) \right\} \right\}$$

$$C.o.m. w.f. of {}^{16}\text{O}$$

$$\phi_{cm}(\mathbf{R}_{cm}) = \left( \frac{32\nu}{\pi} \right)^{3/4} \exp(-16\nu \mathbf{R}_{cm}^2)$$

 $\rightarrow$  G.S. has mean-field-type and  $\alpha$ -cluster degrees of freedom.

Excitation of mean-field-type degree of freedom in g.s  $\rightarrow$  1p1b states (2 bump structure)

➔ 1p1h states (3-bump structure)

Excitation of  $\alpha$ -cluster degree of freedom in g.s  $\Rightarrow \alpha + {}^{12}C$  cluster states:  $2^{nd} 0+$ ,  $3^{rd} 0+$ 

**IS monopole**  
**operator** 
$$\mathcal{O} = \sum_{i=1}^{16} (\mathbf{r}_i - \mathbf{R}_{cm})^2 = \sum_{i=1}^{4} (\mathbf{r}_i - \mathbf{R}_{\alpha})^2 + \sum_{i=5}^{16} (\mathbf{r}_i - \mathbf{R}_{12C})^2 + \frac{3(\mathbf{R}_{\alpha} - \mathbf{R}_{12C})^2}{(\mathbf{r}_i - \mathbf{R}_{12C})^2}$$
  
internal parts relative part

#### 4α OCM calculation





## **Bayman-Bohr theorem**

$$\frac{1}{\sqrt{16!}} \det |(0s)^4 (0p)^{12}| \times [\phi_{\rm cm}(\boldsymbol{R}_{\rm cm})]^{-1} : \text{closed shell}$$

$$= \hat{N}_0 \sqrt{\frac{4! 4! 4! 4!}{16!}} \mathcal{A} \left\{ \left[ u_{40}(\boldsymbol{\xi}_3, 3\nu) \left[ u_{40}(\boldsymbol{\xi}_2, \frac{8}{3}\nu) u_{40}(\boldsymbol{\xi}_1, 2\nu) \right]_{L=0} \right]_{J=0} \right\}$$

$$\times \phi(\alpha_1) \phi(\alpha_2) \phi(\alpha_3) \phi(\alpha_4) \right\} \quad \mathbf{4\alpha}\text{-cluster wf}$$

 $\rightarrow$  G.S. has a 4 $\alpha$ -cluster degree of freedom.







Dominance of SU(3)(04) : no-core shell model by Dytrych et al., PRL98 (2007)



## **Bayman-Bohr theorem**

$$\phi_{J=0}({}^{12}\mathrm{C}) = \left| (0s)^4 (0p)^{12}; (\lambda, \mu) = (0, 4), J^{\pi} = 0^+ \right\rangle_{\text{internal}} : \mathrm{SU}(3) \text{ wf}$$
$$= N_0 \sqrt{\frac{4!4!4!}{12!}} A \left\{ \left[ u_{40}(\xi_2, \frac{8}{3}\nu) u_{40}(\xi_1, 2\nu) \right]_{J=0} \phi(\alpha) \phi(\alpha) \phi(\alpha) \right\}$$

 $3\alpha$ -cluster wf

#### Dominance of SU(3)(04) in <sup>12</sup>C(g.s): confirmed by no-core shell model Dytrych et al., PRL98 (2007)

Yamada et al., PTP120 (2008)

This means that the ground state w.f. of <sup>12</sup>C originally has an  $\alpha$ -clustering degree of freedom together with single-particle degree of free dom.

#### 4α OCM calculation



Monopole excitation to  $0^+_5$  and  $0^+_4$  state

**0**<sup>+</sup><sub>5</sub> state:  ${}^{12}C(1_1) + \alpha(P)$ 

main configuration

**Bayman-Bohr theorem:** 

 $(0s)^4(0p)^{12}$  has no configuration of  $^{12}C(1-)+\alpha$ 

Why this state is excited?

Coupling with  ${}^{12}C(0+,2+)+\alpha$  and  ${}^{12}C(Hoyle)+\alpha$  configuration

**Coherent contribution from these configurations** 

**0**<sup>+</sup><sub>4</sub> **state:**  ${}^{12}C(0_1^+) + \alpha(S)$ : higher nodal

Coherent contributions from  ${}^{12}C(0+,2+)+\alpha$  and  ${}^{12}C(Hoyle)+\alpha$  configurations

#### S<sup>2</sup>-factors of $\alpha$ +<sup>12</sup>C( $L^{\pi}$ ) channels in 0<sup>+</sup> states of <sup>16</sup>O



#### S<sup>2</sup>-factors of $\alpha$ +<sup>12</sup>C( $L^{\pi}$ ) channels in 0<sup>+</sup> states of <sup>16</sup>O





# **Dual nature of the ground states in <sup>12</sup>C and <sup>16</sup>O : common to all** *N*=*Z*=even light nuclei

<sup>20</sup>Ne, <sup>24</sup>Mg, <sup>32</sup>S, ...., <sup>44</sup>Ti,....

$$\Phi_{J}(^{20}\text{Ne}) = |(0s)^{4}(0p)^{12}(1s0d)^{4} : SU(3)(80), J\rangle_{\text{internal}} : SU(3) \text{ wf}$$
  
=  $N_{J}\sqrt{\frac{4!16!}{20!}} \mathcal{A}\left\{\frac{u_{8J}(r_{\alpha})\phi(\alpha)\phi(^{16}\text{O})}{\text{relative wf (J-wave)}}\right\} : \text{cluster wf}$ 

**Excitation of mean-field degree of freedom** 

<sup>20</sup>Ne

 $\rightarrow$   $K^{\pi} = 2^{-}$  band : 5p1h state

#### Excitation of $\alpha$ -cluster degree of freedom

→  $\alpha$ +<sup>16</sup>O cluster states of  $K^{\pi} = 0^{+}_{4}, 0^{-}$  bands

 $K^{\pi} = 0_4^+$  band : higher nodal states

 $\alpha$ +<sup>16</sup>O comp. = 80% for low spins: Q=10 quanta

 $K^{\pi} = 0^{-}$  band : parity - doublet states

Almost pure  $\alpha$ +<sup>16</sup>O structures for low spins: Q=9 quanta



M. Kimura, PRC69, 044319 (2004)

# **Two features of IS monopole excitation**

Cluster states at low energy, Mean-field-type states at higher energy

#### These features will persist in other light nuclei.

We predict that increasing mass number, the two features will gradually be vanishing. Because,

effect of spin-orbit forces becomes stronger:

some SU(3) symmetries are mixed in g.s.

→ Goodness of nuclear SU(3) symmetry: gradually disappearing.

This means that dual nature of g.s is corroding with increasing mass number.

→ Two features of IS monopole excitation will be vanishing.

Eventually only 1p1h-type collective motions are strongly excited.

#### **Hope: Systematic experiments!!**

# Summary

- $\alpha$ -condensation in <sup>12</sup>C, <sup>16</sup>O, heavier 4n nuclei.
- Hoyle-analog states in <sup>11</sup>B, <sup>13</sup>C
- IS monopole tran. : useful to search for cluster states ↔ B(E2): nuclear deformation (Rainwater)
- IS monopole excitations have two features: <sup>16</sup>O (typical)
  - (i)  $\alpha$ -cluster type: discrete peaks at  $E_x \leq 15$  MeV
  - (ii) mean-field type: 3-bump structure (18,23,30 MeV)
- The origin: Dual nature of the ground state of <sup>16</sup>O.
  G.S. has mean-field and α-cluster degrees of freedom
  : (0s)<sup>4</sup>(0p)<sup>12</sup> = SU(3)(00) = α + <sup>12</sup>C w.f. by Bayman-Bohr theorem
- Dual nature is common to all N=Z=even light nuclei
- Two features of IS monopole excitations will persist in other nuclei. Hope experiments.