Using Transfer Reactions for Nucleon Correlation Studies

One-nucleon Transfer Reactions

Survey: Extractions of Neutron Spectroscopic Factors using systematic approach → Structure Information from Transfer Reactions

Experiment: ^{34,46}Ar(p,d) Transfer Reactions in Inverse Kinematics → Asymmetry Dependence of Neutron Correlations

Two-nucleon Transfer Reactions

Two-neutron: Systematic Calculations → Pairing properties of dilute neutron matter

Neutron-proton: Systematics of (p,³He) & (³He,p) Transfer in sd-shell nuclei → Baseline for np-pairing studies for N=Z nuclei

Jenny Lee RIKEN, Nishina Center

Probing the nuclear wave function

Figure courtesy: J.A. Tostevin

Removing nucleon from occupied orbital

→ *Cross sections (probability)* depend on the single-particle occupancy & overlap of many-body wave functions

Full Knowledge of Correlations → Complete Understanding of Nuclear Properties

Spectroscopic Factor (SF)

Cross Sections + Reaction Model

→ Spectroscopic Factors (expt) Quantify Occupancy → Correlation Effects How good the effective interaction in Shell Model for describing correlations ?

 $\frac{SF_{exp}}{SF_{SM}} = 1$

SM description is accurate

How much ? What is the Isospin Dependence of nucleon correlations?

Some correlations missing in the interactions ?

(e,e'p) – Stable nuclei (near closed shell)

- <u>Constant</u>~30-40% of SF reduction compared to theory
- Correlations missing in shell-model interactions

L. Lapikas, Nucl. Phys. A553, 297c (1993)

How about Transfer Reactions ?

Transfer Reactions -- long history (>50 years) → abundant data, but Problems in SF(expt) !

Experimental SF from Transfer Reactions

ADWA (consistent set)

✓ Johnson-Soper (JS) Adiabatic Approximation takes care of d-break-up effects

✓ Use global p and n optical potential with standardized parameters (CH89)

✓ Include finite range & nonlocality corrections

✓ *n*-potential : Woods-Saxon shape r_o =1.25 & a_o =0.65 fm; depth adjusted to reproduce experimental binding energy

TWOFNR, M. Igarashi et al.,

X.D. Liu et al., Phys Rev. C 69 (2004) 064313 J. Lee et al., Phys. Rev. C75 (2007) 064320

Ground-state Spectroscopic Factors of Z=3-24

SF(ADWA)

• Most extracted SFs less than IPM-pluspairing predictions

• Absence of nucleon-nucleon correlations

LB-SM predictions (Residual interactions \rightarrow correlations)

• Remarkable 20% agreement to the large-basis shell-model calculations

LB-SM code : Oxbash, Alex Brown (MSU)

Excited-state Spectroscopic Factors of sd-shell nuclei

Excited-state SFs of rare nuclei:

- rp process calculations
- X-ray burst simulations
- Not available in experiment
- → SFs from SM predictions

✤ SFs for excited states are very small (< 0.1)</p>

 \rightarrow Test the predictive power of Shell Model

 \rightarrow Evaluate the latest interactions (USDA/USDB) in sd-shell region

M.B. Tsang and J. Lee et al., Phys. Rev. Lett. 102, 062501 (2009)

SF > 0.002: 30% Agreement with Shell Model SF < 0.002: SM calculations are not accurate

Neutron SFs for Ca, Ti, Cr isotopes

- Poor Shell Model predictions near ⁴⁰Ca
 → > 10 times larger than measured
- Not ⁴⁰Ca core + single particle \rightarrow due to core excitation and fragmentation of states

Expt: Large Fragmentation of States Shell-Model: Mainly Single Particle States

Ground-state Neutron SFs for Ni isotopes

Ground-state Neutron SFs for Ni isotopes

⁵⁶Ni is not a good closed core
 Description of Ni isotopes requires ⁴⁰Ca core

Excited-state Neutron SFs for Ni isotopes

• GXFP1A with full fp model space does not require ⁵⁶Ni shell closure → CPU intensive

• JJ4PNA interaction uses ⁵⁶Ni shell closure → much less CPU demanding

SF values agree to factor of 2 \rightarrow cannot distinguish between two interactions Data uncertainties: 20-30 % \rightarrow Interactions for fpg shell still need improvements

> M.B. Tsang and J. Lee et al., Phys. Rev. Lett. 102, 062501 (2009) J. Lee and M.B. Tsang et al., Phys. Rev. C 79, 054611 (2009)

Survey of Spectroscopic Factor (Transfer Reactions)

Confirmation of Spin Assignment from Systematics

M.B. Tsang and J. Lee et al., Phys. Rev. Lett. 102 (2009) 062501

Survey of Spectroscopic Factor (Transfer Reactions)

Suppression of SFs in Transfer Reactions

Constant ~30% reduction in SFs

J. Lee, J.A. Tostevin et al., Phys. Rev. C 73, 044608 (2006)

CH89 + ro=1.25 fm with minimum assumption → consistent SF(expt) with Shell Model

Microscopic Input in Reaction Model

→ JLM potential & Hartree-Fock (SK20)

 $r_o=1.25 \text{ fm} \rightarrow HF \text{ rms} \text{ radius}$

Global CH89 \rightarrow JLM + HF densities

• Transfer reactions do not yield <u>absolute</u> SF; Systematic approach \rightarrow <u>relative</u> SF can be obtained <u>reliably</u> over a wide range of nuclei

• Nuclear structure purpose → Relative normalized SFs

Isospin Dependence of Neutron Correlations

Isospin Dependence of Neutron Correlations

00

20 30

40 50 60 Energy of CsI (MeV) 70 80 90 100

✓ 1024 pixels (2mm x2mm)
 ✓ 0.16° at 35 cm setup

J. Lee et al., Phys. Rev. Lett 104, 112701 (2010) J. Lee et al., Phys. Rev. C 83, 014606 (2011)

J. Lee et al., Phys. Rev. C 83, 014606 (2011)

Isospin Dependence of Nucleon Correlations

Q: Isospin Dependence ?

Transfer reactions: Weak

p(^{34,36,46}Ar,d) at 33 MeV/A

J. Lee et al., Phys. Rev. Lett 104, 112701 (2010)

Knockout reactions: Yes & Strong

A. Gade et al., Phys. Rev. C 77, 044306 (2008) & reference therein

Systematic difference between two probes !

Inconsistency → Incomplete understanding in underlying reaction mechanism

Transfer Reactions – Experimental Challenges

- Small reaction cross sections (~ 1 mb)
- Intensity required $\sim 10^3 10^4 s^{-1}$
- Cross sections drop rapidly with energy

- Low Energy reactions

 \rightarrow limit the experimental reach of transfer reactions

Energy-degraded intense beams

 \rightarrow Large energy spread of the beams

Sensitivity to what part of nucleon correlations → Reaction energy

Summary I : One-Nucleon Transfer

Analyzed > 2000 measured angular distributions systematically using CH89 potential and conventional n-bound state parameters → Spectroscopic Factors

88 g.s. & 565 excited-state SFs → Compare to shell model (Oxbash) to test the residual interactions

Benchmark and Essential framework to understand structure information using transfer reactions

n-SF -- No strong dependence of neutron correlations on asymmetry

Intriguing questions: Reaction mechanisms of transfer and knockout reactions

Pairing Correlations Using Transfer Reactions

Two-like nucleon Transfer Reaction

Similarity between pairing field and 2-body transfer operator

Two-nucleon transfer reactions like (t,p) or $(p,t) \rightarrow$ specific tool to probe T=1 pair correlations

Spectra from (p,t) reactions

S.J. Freeman *et al.* PRC **75** 051301(R) (2007)

Ground-state composed of BCS pairs, twonucleon transfer cross sections enhanced

R.A. Broglia et al., Adv. Nucl. Phys. 6, 287 (1973)

⁷⁶Ge & ^{76,78}Se(p,t) strength: predominately to the ground states → simple BCS paired states

How to get more quantitative + systematic knowledge of *nn-pairing* ?

nn-pairing in Sn Isotopes

Pair Transition density – Skyrme HFB + QRPA approach

How to see & interpret these *nn*-pairing structure in Transfer Reaction ?

Insight \rightarrow First Step: Systematic Reaction Calc.

One-step transfer + QRPA Form Factor

Planned: Two-step Calculations

<u>TWOFNR</u>, M. Igarashi et al., Calc: D.Y. Pang (Peking), Y. Aoki (Tsukuba)

Advanced 2n Transfer Calculations

Calculation of *absolute (p,t)* cross sections:

- Proper pairing interaction
- Multistep & All Terms

G. Pote	l et al.,	Phys.	Rev.	Lett.	107,	092501	(2011)
---------	-----------	-------	------	-------	------	--------	--------

	$\sigma(\mu b)$					
	5.11 MeV	6.1 MeV	10.07 MeV	15.04 MeV		
total	1.29×10^{-17}	3.77×10^{-8}	39.02	750.2		
successive	9.48×10^{-20}	1.14×10^{-8}	44.44	863.8		
simultaneous	1.18×10^{-18}	8.07×10^{-9}	10.9	156.7		
non-orthogonal	2.17×10^{-17}	7.17×10^{-8}	22.68	233.5		
non-orth.+sim.	1.31×10^{-17}	3.34×10^{-8}	3.18	17.4		
pairing	1.01×10^{-19}	6.86×10^{-10}	0.97	14.04		

Q: Best reaction energy for 2N-transfer expt. ? Energy region \rightarrow large cross sections & good control of reaction mechanism (calculation).

Q: Other probe (¹⁸O,¹⁶O) etc \rightarrow Structure ?

Ans: from Reliable Reaction Calc.

Neutron-Proton Pair Correlations

Previous Observables for *np***-pairing**

Extra Binding Energy of N=Z nuclei *"Wigner Energy"*

PHYSICAL REVIEW C, VOLUME 61, 041303(R)

Is there *np* pairing in N=Z nuclei?

A. O. Macchiavelli, P. Fallon, R. M. Clark, M. Cromaz, M. A. Deleplanque, T(T+1) - simple F. S. Stephens, C. E. Svensson, K. Vetter, and Nuclear Science Division, Lawrence Berkeley National Laboratory, Symmetry energy (Received 15 April 1999; published 10 March 2000)

The binding energies of even-even and odd-odd N=Z nuclei are compared. After correcting for the symmetry energy we find that the lowest T=1 state in odd-odd N=Z nuclei is as bound as the ground state in the neighboring even-even nucleus, thus providing evidence for isovector np pairing. However, T=0 states in odd-odd N=Z nuclei are several MeV less bound than the even-even ground states. We associate this difference with the T=1 pair gap and conclude from the analysis of binding energy differences and blocking arguments that there is no evidence for an isoscalar (deuteronlike) pair condensate in N=Z nuclei.

Physics Letters B 393 (1997) 1-6

Competition between T = 0 and T = 1 pairing in proton-rich nuclei

W. Satuła^{a,b,c,d}, R. Wyss^a ^a The Royal Institute of Technology, Physics Department Frescati, Frescativägen 24, S-104 05 Stockholm, Sweden ^b Joint Institute for Heavy Ion Research, Oak Ridge, TN 37831, USA

Mean-field term T^2 as symmetry

energy, T as np pairing

^c Department of Pl d Institute of Theoretical Ph Received 26 Au

Abstract

A cranked mean-field model with two-body T = 1 and T = 0 pairing interactions is presented. Approximate pro onto good particle-number is enforced via an extended Lipkin-Nogami scheme. Our calculations suggest the simu presence of both T = 0 and T = 1 pairing modes in N = Z nuclei. The transitions between different pairing ph discussed as a function of neutron/proton excess, T_z , and rotational frequency, $\hbar\omega$. The additional binding energy d T = 0 np-pairing correlations, is suggested as a possible microscopic explanation of the Wigner energy term i nuclei.

Proof of existence of T=0 pairing collectivity using B.E. depends on interpretations

J. Dobaczewski, arXiv:nucl-th/0203063v1

Rotational properties (high-spin aspect): moments of inertia, alignments

PHYSICAL REVIEW LETTERS VOLUME 87, NUMBER 13

24 S

Alignment Delays in the N = Z Nuclei ⁷²Kr, ⁷⁶Sr, and ⁸⁰Zr

S. M. Fischer,¹ C. J. Lister,² D. P. Balamuth,³ R. Bauer,⁴ J. A. Becker,⁴ L. A. Bernstein,⁴ M. P. Carpent N. Fotiades,⁶ S. J. Freeman,⁵ P.E. Garrett,⁴ P.A. Hausladen,³ R. V.E. Janssons ² D. Jankins ^{2,3} M. Laday J. Schwartz,² D. Svelnys,¹ D. G. Sarantites,⁸ D. Se *Coriolis effect* T=0

The ground state rotational bands of the N = Z nuclei ⁷²Kr, ⁷⁶Sr, and ⁸⁰Zr have been the angular momentum region where rotation alignment of particles is normally expected. the moments of inertia of these bands we have observed a consistent increase in the rotatic required to start pair breaking, when compared to neighboring nuclei. ⁷²Kr shows the most marked effect. It has been widely suggested that these "delayed alignments" arise from *np*-pairing correlations. However, alignment frequencies are very sensitive to shape degrees of freedom and normal pairing, so the new experimental observations are still open to interpretation.

PHYSICAL REVIEW C 67, 064318 (2003)

Unravelling the band crossings in ⁶⁸Se and ⁷²Kr: The quest for T=0 pairing

S. M. Fischer Department of Physics, DePaul University, Chicago, Illinois 60614, USA and Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

C. J. Lister Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

ments indicate that the two high-spin bands have very different shapes. Similar, sharp

was found.

established in both nuclei. A comparison of these data with recent measurements of N=Z+2 nuclei ⁷⁴Kr allowed the issue of "delayed alignments" to be addressed in detail. No clear-cut evidence for any delay

D. P. Balamuth <u>etme</u>nt of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Change Experimental Observables from static properties → dynamic counterparts !

suggested to contain information on T=0 neutronnomentum states in the N=Z

lated through

Neutron-Proton Transfer Reactions

PRL 94, 162502 (2005) PHYSICAL REVIEW LETTERS

week ending 29 APRIL 2005

Deuteron Transfer in N = Z Nuclei

P. Van Isacker,¹ D. D. Warner,² and A. Frank³

 ¹Grand Accélérateur National d'Ions Lourds, B.P. 55027, F-14076 Caen Cedex 5, France
 ²CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom
 ³Instituto de Ciencias Nucleares, UNAM, Apdo. Postal 70-543, 04510 México, D.F. Mexico (Received 14 September 2004; published 29 April 2005)

Interacting Boson Model (IBM-4)

TABLE I. Predicted deuteron-transfer intensities C_T^2 between even-even (EE) and odd-odd (OO) N = Z nuclei in the SU(4) (b/a = 0) and $U_T(3) \otimes U_S(3)$ $(|b/a| \gg 1)$ limits.

	Limit	Reaction	$C_{T=0}^{2}$	$C_{T=1}^{2}$
	b/a = 0	$EE \rightarrow OO_{T=0}$	$\frac{1}{2}(N_{\rm b}+6)$	0
		$EE \rightarrow OO_{T=1}$	0	$\frac{1}{2}(N_{\rm b}+6)$
		$OO_{T=0} \rightarrow EE$	$\frac{1}{2}(N_{\rm b}+1)$	0
		$OO_{T=1} \rightarrow EE$	0	$\frac{1}{2}(N_{\rm b}+1)$
	$b/a \ll -1$	$EE \rightarrow OO_{T=0}$	$N_{\rm b} + 3$	0
T=0	stronger	$EE \rightarrow OO_{T=1}$	0	3
	stronger	$OO_{T=0} \rightarrow EE$	$N_{\rm b} + 1$	0
	$b/a \gg \pm 1$	$EE \rightarrow OO_{T=0}$	3	0
T 1		$EE \rightarrow OO_{T=1}$	0	$N_{\rm b} + 3$
<u>]=</u>]	stronger	$OO_{T=1} \rightarrow EE$	0	$N_{\rm b} + 1$

T=0 (T=1) pairing: enhanced transfer probabilities $\theta^+ \rightarrow 1^+ (\theta^+ \rightarrow \theta^+)$ levels

Measure the np transfer cross section to T=1 and T=0 states Absolute $\sigma(T=1)$ and $\sigma(T=0)$ – character and strength of the correlations $\sigma(T=1) / \sigma(T=0)$ – interplay of T=1 and T=0 pairing modes

np-Transfer Reactions using Radioactive Beams

- **Proof of Principle (LBNL) successfully completed** ³He(⁴⁴Ti,p) @ 4.5 AMeV at ATLAS
- Approved experiments at ISAC2

⁴⁸Cr, ⁷²Kr – (³He,p) *LBNL, ANL, TRIUMF*

- Plan: ReA3/NSCL using AT-TPC (LBNL)
- Approved experiments at GANIL
 ⁴⁸Cr, ⁵⁶Ni -- (d, α) @ ~30 AMeV

Insight / physics of *np*-pairing ? Methodology / framework established ? Physics from light *N=Z* stable nuclei ?

Systematics of T=0 & T=1 np-pairing in sd-shell

Ratio of cross section (T=1/T=0) - reducing systematic effects of absolute normalization

from A. Macchiavelli (LBNL)

Shiro Yoshida, NP 33, 685 (1962)

Superfluid limit ~ $(2\Delta_{T=1}/G)^2$

Single-particle estimate ~ (spin)x(³He)x(LS -> jj)

Inconsistencies in the trends (sd-shell):

- Closed-shell nuclei ¹⁶O, ⁴⁰Ca NOT follow single-particle estimate ?
- > No intuitive understanding ²⁰Ne, ²⁴Mg follow single-particle prediction ?
- **Doubtful increase of** > a factor of 10 from ²⁴Mg to ²⁸Si ?

Need systematic measurements dedicated to *np*-pairing studies !

Systematics of T=0 & T=1 np-pairing in sd-shell

Framework & Baseline -- studies of np pairing in heavier N=Z nuclei (RI Beams)

Systematics of T=0 & T=1 np-pairing in sd-shell

²⁴Mg(³He,p) @ 25 MeV

Online Results

np-Transfer Reactions – Stable *N=Z* nuclei

New Structure of *np*-pairing:

- transfer amplitudes from SM / pair operators
- matrix elements from spherical/ projected SM
- formulating *np*-pairing using QRPA
- including T=0 *np*-pairing based on MF / SLAP

Framework / Baseline -- studies of np pairing in heavier N=Z nuclei (RI Beams)

Summary II : Two-Nucleon Transfer

<u>2*n*-transfer</u> → Sensitivity to pairing properties of dilute neutron matter

Reliable Calculations → Experimental planning (eg. Best reaction energy)

<u>*np*-transfer</u> → Dynamical Effects of np-pairing

Systematic measurements in *sd*-shell nuclei

Benchmark & Baseline of *np*-pairing research

