Structure of halo nuclei and transfer reactions

F. Barranco and G. Potel

Sevilla University

R.A. Broglia

Milano University and INFN

The Niels Bohr Institute, Copenhagen

E. Vigezzi

INFN Milano

DCEN 2011, Kyoto

Outline

- Beyond the inert core approximation
- A dynamical model for one- (11Be, 10Li,..) and two-neutron halo nuclei (12Be, 11Li,...)
- Comparison with experiment: structure and reaction data

Talk by K. Hagino

Three-body model with density-dependent delta force

G.F. Bertsch and H. Esbensen, Ann. of Phys. 209('91)327 H. Esbensen, G.F. Bertsch, K. Hencken, ¹¹Li, ⁶He Phys. Rev. C56('99)3054 n \mathbf{r}_1 V_{WS} **Density-dependent delta-force** $v(r_1, r_2) = v_0(1 + \alpha \rho(r))$ V_{WS} \mathbf{r}_2 $\times \delta(r_1 - r_2)$ core n

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + V_{nC}(r_1) + V_{nC}(r_2) + V_{nn} + \frac{(p_1 + p_2)^2}{2A_c m}$$

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + V_{nC}(r_1) + V_{nC}(r_2) + V_{nn} + \frac{(p_1 + p_2)^2}{2A_c m}$$

$$V_{nn}(r_1, r_2) = \delta(r_1 - r_2) \left(v_0 + \frac{v_{\rho}}{1 + \exp[(r_1 - R_{\rho})/a_{\rho}]} \right)$$

- \checkmark contact interaction
- \checkmark v₀: free n-n
- ✓ density dependent term: medium many-body effects

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} + V_{nC}(r_1) + V_{nC}(r_2) + V_{nn} + \frac{(p_1 + p_2)^2}{2A_c m}$$

$$\Psi_{gs}(\boldsymbol{r},\boldsymbol{r}') = \mathcal{A} \sum_{nn'lj} \alpha_{nn'lj} \Psi_{nn'lj}^{(2)}(\boldsymbol{r},\boldsymbol{r}')$$

Good agreement with Faddeev calculations

TABLE I. Ground state properties of ¹¹Li obtained with the shallow neutron-core potential (4.1). All of our calculations employ a radial box of 40 fm; the cutoff in the two-particle spectrum is 15 MeV, except in line 6. Line 7 is the no-recoil limit corresponding to line 5.

Line	Comments	<i>a</i> _{<i>nn</i>} (fm)	S_{2n} (keV)	$\langle r_{c,2n}^2 \rangle$ (fm ²)	$\langle r_{n,n}^2 \rangle$ (fm ²)	$(s_{1/2})^2$ (%)
1	HHM [10]	-18.5	300	25.0	60.8	98.4
2	Faddeev [11]	-18.5	318	28.1	62.4	95.1
3	$v_{\rho}=0$	-18.5	569	20.3	49.0	92.1
4	$v_{\rho}=0$	-9.81	318	26.0	65.3	93.5
5	$v_{\rho} \neq 0$	-15.0	318	28.3	67.1	92.4
6	$v_{\rho} \neq 0, E_{\text{cut}} = 25 \text{ MeV}$	-15.0	318	27.6	62.9	91.1
7	line 5, no recoil	-15.0	318	25.3	67.9	94.4

H. Esbensen, G.F. Bertsch, K. Hencken, Phys. Rev. C 56 (1997) 3054

Relax some of the assumptions of Bertsch and Esbensen:

Inert core

Different potentials for s- and p- waves

Zero range interaction, with ad hoc density dependence

H. Esbensen, G.F. Bertsch, K. Hencken, Phys. Rev. C 56 (1997) 3054 Low-lying collective modes of the core taken into account

Standard mean field potential

Bare N-N interaction (Argonne)

¹⁰Li, ¹¹Li F. Barranco et al. EPJ A11 (2001) 385 ¹¹Be, ¹²Be G. Gori et al. PRC 69 (2004) 041302(R)

Measurement of the Two-Halo Neutron Transfer Reaction ¹H(¹¹Li, ⁹Li)³H at 3A MeV

I. Tanihata,* M. Alcorta,[†] D. Bandyopadhyay, R. Bieri, L. Buchmann, B. Davids, N. Galinski, D. Howell, W. Mills, S. Mythili, R. Openshaw, E. Padilla-Rodal, G. Ruprecht, G. Sheffer, A. C. Shotter, M. Trinczek, and P. Walden TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada

> H. Savajols, T. Roger, M. Caamano, W. Mittig,^{*} and P. Roussel-Chomaz GANIL, Bd Henri Becquerel, BP 55027, 14076 Caen Cedex 05, France

> > R. Kanungo and A. Gallant

Saint Mary's University, 923 Robie St., Halifax, Nova Scotia B3H 3C3, Canada

M. Notani and G. Savard ANL, 9700 S. Cass Ave., Argonne, Illinois 60439, USA

I.J. Thompson

LLNL, L-414, P.O. Box 808, Livermore, California 94551, USA (Received 22 January 2008; published 14 May 2008)

The cross section for transitions to the first excited state (Ex = 2.69 MeV) is shown also in Fig. 3. If this state were populated by a direct transfer, it would indicate that a 1⁺ or 2⁺ halo component is present in the ground state of ¹¹Li($\frac{3}{2}^{-}$), because the spin-parity of the ⁹Li first excited state is $\frac{1}{2}^{-}$. This is new information that has not yet been observed in any of previous investigations. A compound

Schematic depiction of ¹¹Li

First excited state of ⁹Li

Parity inversion in N=7 isotones

Admixture of d_{5/2} x 2⁺ configuration in the 1/2⁺ g.s. of ¹¹Be is about 20%

Mean field potential

From B(EL) experimental value in the core nucleus

Effective, energy-dependent matrix (Bloch-Horowitz)

Main ingredients of our calculation

Fermionic degrees of freedom:

• s1/2, p1/2, d5/2 Wood-Saxon levels up to 150 MeV (discretized continuum) from a standard (Bohr-Mottelson) Woods-Saxon potential

Bosonic degrees of freedom:

• 2+ and 3- QRPA solutions with energy up to 50 MeV; residual interaction: multipole-multipole separable with the coupling constant tuned to reproduce E(2+)=3.36 MeV and $0.6<\beta_2<0.7$

A dynamical description of two-neutron halos

Phenomenological input: properties of collective models

Predictions: binding energy, spectroscopic factors

Table 2. RPA wave function of the collective low-lying quadrupole phonon in ¹¹Li, of energy $E_{2+} = 5.05$ MeV, and leading to the most important contribution to the induced interaction in fig. 1, II. All the listed amplitudes refer to neutron transitions, except for the last column. We have adopted the self-consistent value ($\chi_2 = 0.013 \,\text{MeV}^{-1}$) for the coupling constant. The resulting value for the deformation parameter is $\beta_2 = 0.5$.

	$1p_{3/2}^{-1}1p_{1/2}$	$2s_{1/2}^{-1}5d_{3/2}$	$1p_{1/2}^{-1}6p_{3/2}$	$2s_{1/2}^{-1}3d_{5/2}$	$2s_{1/2}^{-1}5d_{5/2}$	$1p_{3/2}^{-1}1p_{1/2}(\pi)$
$X_{\rm ph}$	0.824	0.404	0.151	0.125	0.126	0.16
$Y_{\rm ph}$	0.119	0.011	-0.002	-0.049	-0.011	0.07

B(E1) calculated with separable force; coupling constant tuned to reproduce experimental strength; part of the strength comes from admixture of GDR

Table 3. RPA wave function of the strongest low-lying dipole vibration of ¹¹Li, ($E_{1-} = 0.75$ MeV), and contributing most importantly to the pairing induced interaction (fig. 1, II). All the listed amplitudes refer to neutron transitions. We have used the value $\chi_1 = 0.0043$ MeV⁻¹ for the isovector coupling constant in order to get a good agreement with the experimental findings. To be noted that this value coincides within 25% close to the selfconsistent value of 0.0032 MeV⁻¹. The resulting strength function (cf. fig. 2(a)) integrated up to 4 MeV gives 7% of the Thomas-Reiche-Kuhn energy weighted sum rule, to be compared to the experimental value of 8% [38].

	$1p_{1/2}^{-1}2s_{1/2}$	$1p_{1/2}^{-1}3s_{1/2}$	$1p_{1/2}^{-1}4s_{1/2}$	$1p_{1/2}^{-1}1d_{3/2}$	$1p_{3/2}^{-1}5d_{5/2}$	$1p_{3/2}^{-1}6d_{5/2}$	$1p_{3/2}^{-1}7d_{5/2}$
$X_{\rm ph}$	0.847	-0.335	0.244	0.165	0.197	0.201	0.157
$Y_{\rm ph}$	0.088	0.060	0.088	0.008	0.165	0.173	0.138

Results for ¹⁰Li and ¹¹Li

		Exp.	Theory	
			particle-vibration +Argonne	mean field
$^{10}_{3}$ Li ₇	s	$0.1-0.2 {\rm ~MeV}$	0.2 MeV (virtual)	~ 1 MeV (virtual)
(not bound)	р	$0.5\text{-}0.6~\mathrm{MeV}$	0.5 MeV (res.)	-1.2 MeV (bound)
	S_{2n}	0.369 MeV	$0.33~{ m MeV}$	$2.4~{ m MeV}$
$^{11}_{3}\mathrm{Li}_{8}$	$^{\rm s^2,p^2}$	50% , $50%$	41% , $59%$	0% , 100%
(bound)	$\langle r^2 \rangle^{1/2}$	$3.55{\pm}0.1~{ m fm}$	3.9 fm	
	Δp_{\perp}	$48{\pm}10~{\rm MeV/c}$	$55~{ m MeV/c}$	

11Li correlated wave function

$$|\tilde{0}\rangle = |0\rangle + 0.7 |(ps)_{1^{-}} \otimes 1^{-}; 0\rangle + 0.1 |(sd)_{2^{+}} \otimes 2^{+}; 0\rangle$$
$$|0\rangle = 0.45 |s_{1/2}^{2}(0)\rangle + 0.55 |p_{1/2}^{2}(0)\rangle + 0.04 |d_{5/2}^{2}(0)\rangle$$

Correlated halo wavefunction

Uncorrelated

¹¹Li correlated wave function

The halo wavefunction is made out of components which are superposition of single-particle wavefunctions in the discretized continuum, leading to a bound state:

 $|0\rangle = 0.45|s_{1/2}^2(0)\rangle + 0.55|p_{1/2}^2(0)\rangle + 0.04|d_{5/2}^2(0)\rangle$

A part of the wavefunction is explicitly coupled to 1- and 2+ vibrations:

$$|\tilde{0}\rangle = |0\rangle + 0.7 |(ps)_{1^{-}} \otimes 1^{-}; 0\rangle + 0.1 |(sd)_{2^{+}} \otimes 2^{+}; 0\rangle$$

Results for ¹¹Be,¹²Be Good agreement between theory and experiment concerning energies and spectroscopic factors

New result for S[1/2+]: 0.28^{+0.03} -0.07

Kanungo et al. PLB 682 (2010) 39 Spectroscopic factors from (12Be,11Be+ γ) reaction to $\frac{1}{2}$ and $\frac{1}{2}$ final states: S[1/2-]= 0.37±0.10 S[1/2+]= 0.42±0.10

			The	ory	A. Navin et a	I.,)266
		Expt.	Particle vibration	Mean field	1112 00(2000	,200
	E51/2	-0.504 MeV	-0.48 MeV	$\sim 0.14 \text{ MeV}$	1000 900 /A (¹² B	e, ¹¹ Be + γ)
	$E_{p_{1/2}}$	-0.18 MeV	-0.27 MeV	-3.12 MeV	800	
¹¹ Be ₇	E_{dso}	1.28 MeV	$\sim 0 \text{ MeV}$	~2.4 MeV	600 E Ke	eV] 10
	$S[1/2^+]$	0.65-0.80 [19]	0.87	1	400	/ 1/2
		0.73±0.06 [20]			300 44	
		0.77 [21]			2 ×+ /	
	S[1/2 ⁻]	0.63±0.15 [20]	0.96	1	1 200 NH4 1 0	1/2
		0.96 [21]		1		
	<i>S</i> [5/2 ⁺]		0.72	1	100	
	S_{2n}	-3.673 MeV	-3.58 MeV	-6.24 MeV		ktutu tu
² Be ₈	s^2, p^2, d^2		23%,29%,48%	0%,100%,0%	50	' MALL
-	S[1/2 ⁺]	0.42±0.10 [7]	0.31	0	40 -	ti Th
	S[1/2-]	0.37±0.10 [7]	0.57	2	200 300 400 5	00 600

Probing ¹¹Li halo-neutrons correlations via (p,t) reaction

PRL 100, 192502 (2008)

PHYSICAL REVIEW LETTERS

week ending 16 MAY 200

Measurement of the Two-Halo Neutron Transfer Reaction ¹H(¹¹Li, ⁹Li)³H at 3A MeV

I. Tanihata,* M. Alcorta,[†] D. Bandyopadhyay, R. Bieri, L. Buchmann, B. Davids, N. Galinski, D. Howell, W. Mills, S. Mythili, R. Openshaw, E. Padilla-Rodal, G. Ruprecht, G. Sheffer, A. C. Shotter, M. Trinczek, and P. Walden *TRIUMF*, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada

> H. Savajols, T. Roger, M. Caamano, W. Mittig,[‡] and P. Roussel-Chomaz GANIL, Bd Henri Becquerel, BP 55027, 14076 Caen Cedex 05, France

> R. Kanungo and A. Gallant Saint Mary's University, 923 Robie St., Halifax, Nova Scotia B3H 3C3, Canada

> > M. Notani and G. Savard ANL, 9700 S. Cass Ave., Argonne, Illinois 60439, USA

I. J. Thompson LLNL, L-414, P.O. Box 808, Livermore, California 94551, USA (Received 22 January 2008; published 14 May 2008)

The cross section for transitions to the first excited state (Ex = 2.69 MeV) is shown also in Fig. 3. If this state were populated by a direct transfer, it would indicate that a 1⁺ or 2⁺ halo component is present in the ground state of ¹¹Li($\frac{3}{2}^{-}$), because the spin-parity of the ⁹Li first excited state is $\frac{1}{2}^{-}$. This is new information that has not yet been observed in any of previous investigations. A compound

TABLE I. Optical potential parameters used for the present calculations.

	V MeV	r_V fm	a_V fm	W MeV	W_D MeV	r_W fm	a_W fm	V _{so} MeV	r _{so} fm	a _{so} fm
$p + {}^{11}\text{Li}$ [10]	54.06	1.17	0.75	2.37	16.87	1.32	0.82	6.2	1.01	0.75
$d + {}^{10}\text{Li}$ [11]	85.8	1.17	0.76	1.117	11.863	1.325	0.731	0		
t + ⁹ Li [12]	1.42	1.16	0.78	28.2	0	1.88	0.61	0		

Calculation of absolute two-nucleon transfer cross section by finite-range DWBA calculation

simultaneous and successive contributions

	$\sigma(^{11}\text{Li}(\text{gs}) \rightarrow {}^{9}\text{Li}(i)) \text{ (mb)}$		
i	ΔL	Theory	Experiment
gs (3/2 ⁻)	0	6.1	5.7 ± 0.9
2.69 MeV (1/2 ⁻)	2	0.5	1.0 ± 0.36

G. Potel et al., PRL 105 (2010) 172502

Decomposition into successive and simultaneous contributions

3/2- ground state

Convergence of the calculation

With box radius

With number of intermediate states

Channels c leading to the first $1/2^-$ excited state of ⁹Li

Two-step effects : how important are they?

Reaction	σ (mb)	Notation
$^{1}\text{H}+^{11}\text{Li} \rightarrow ^{1}\text{H}+^{11}\text{Li}$	452	σ_{el}
$^{1}\text{H}+^{11}\text{Li}\rightarrow {}^{3}\text{H}+{}^{9}\text{Li}(gs)$	8.0	σ_{2n}
$^{1}\text{H}+^{11}\text{Li}\rightarrow {}^{3}\text{H}+{}^{9}\text{Li}(1/2^{-}; 2.69 \text{ MeV})$	0.79	$\sigma_{2n}^{1/2^{-}}$
${}^{3}\text{H}+{}^{9}\text{Li}(\text{gs}) \rightarrow {}^{3}\text{H}+{}^{9}\text{Li}(1/2^{-}; 2.69MeV)$	35	$\sigma_{\textit{inel}}$

Excitation of ¹/₂- state following transfer

Parity inversion in N=7 isotones

Comparison with the model by Ikeda, Myo et al.

K. Ikeda et al, Lect. Notes in Physics 818 (2010)

and essentially all the theoretical works of 11Li had to accept that the 1s1/2 single particle state is brought down to the 0p1/2 state without knowing its reason ...

The theoretical challenge on the halo structure is therefore summarized as follows. There are many indications that the *s*-wave component is very large in the ground state wave function. Hence, we have to find a mechanism to bring down the $s_{1/2}$ orbit with the amount to wash out the N = 8 magic structure.

$${}^{9}Li\rangle = C_{1}|(s_{1/2})_{\pi}^{2}(s_{1/2})_{\nu}^{2}(p_{3/2})_{\pi}(p_{3/2})_{\nu}^{4}\rangle_{J=3/2} + C_{2}|(s_{1/2})_{\pi}^{2}(s_{1/2})_{\nu}^{2}(p_{3/2})_{\pi}(p_{3/2})_{\nu J=0}^{2}(p_{1/2})_{\nu J=0}^{2}\rangle_{J=3/2} + C_{3}|[(s_{1/2})_{\pi}(s_{1/2})_{\nu}]_{J=1}(p_{3/2})_{\pi}(p_{3/2})_{\nu}^{4}[(p_{1/2})_{\pi}(p_{1/2})_{\nu}]_{J=1}\rangle_{J=3/2} + \cdots$$

p_{1/2} orbit is pushed up by pairing correlations
 and tensor force. Only 3/2- configurations
 are included: coupling to core vibrations (1/2-) is
 not considered. Binding energy is given
 as input. 50%(s²)-50%(p²) wavefunction is obtained

CONCLUSION:

According to a dynamical model of the halo nucleus 11Li, a key role is played by the coupling of the valence nucleons with the vibrations of the system.

The structure model has been tested with a detailed reaction calculation, comparing with data obtained in a recent (t,p) experiment. Theoretical and experimental cross section are in reasonable agreement.

Many open issues, among them: Optical potentials The role of the tensor force