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How to use dynamics to study pairing correlations? 

The main road is clearly provided by the study of those 
processes where a pair of particles in involved, e.g. 

transferred from/to another nucleus (two-particle transfer) 
or ejected onto the continuum (two-particle break-up).  

Unfortunately, the situation is different, for example, from 
low-energy one-step Coulomb excitation, where the 
excitation probability is directly proportional to the 

B(Eλ) values.  Here the reaction mechanism is much more 
complicated and the possibility of extracting spectroscopic 
information on the pairing field is not obvious. The situation 

is actually more complicated even with respect to other 
processes (as inelastic nuclear excitation) that may need to 

be treated microscopically, but where the reaction 
mechanism is somehow well established. 



It is often assumed that the cross section for two-
particle transfer just scale with T0, the square of 
the matrix element of the pair creation (or 
removal) operator 

                          P+ =∑j [a+
ja+

j]00 

For this reason the easiest way to define and 
measure the collectivity of pairing modes is to 
compare with single-particle pair transition 
densities and matrix elements to define some 
“pairing” single-particle units and therefore 
“pairing” enhancement factors. 

Obs: We discuss here monopole pairing modes, i.e. 0+states 
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But the two-particle transfer process in not sensitive 
to just the pair matrix element.  We have to look at 

the radial dependence, which is relevant for the 
reaction mechanism associated with pair transfer 

processes.  
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OBS: mixing of
 configurations
 with opposite
 parity  



|Ψ(r1,r2)|2 as a function of r2, for fixed r1 

particle-particle spatial correlations 

Neutron addition mode: ground state of 210Pb 
position of particle 1 
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Interesting problem: 
how is changed the picture as we move closer  
or even  beyond the drip lines? 

Example: 
the case of 
6He 

R 

r 

Oganessian, Zagrebaev, Vaagen, 1999 



Other example: the case of 11Li 



Two-particle transfer reactions 



Example of multinucleon transfers at Legnaro 
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The classical example: 
Sn+Sn 
(superfluid on superfluid) +1n 
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Von Oertzen, Bohlen etal 



A way to define a pairing
 “enhancement” factor, by
 plotting transfer
 probabilities not as function
 of the scattering angle, but
 as function of the distance
 of closest approach of the
 corresponding classical
 trajectory  
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General problem: how separate the contribution of  0+ states? 



Proton transfer 



Corradi etal, LNL 
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Reaction mechanism and models for two-particle
 transfer processes 

Large number of different approaches, ranging from
 macroscopic to semi-microscopic and to fully
 microscopic.  They all try to reduce the actual
 complexity of the problem, which is a four-body
 scattering (the two cores plus the two transferred
 particles). 



Aside from the precise description of the reaction  
mechanism (and therefore from the absolute values of  
the cross sections), some points are more or less 
well established 

•  Angular distributions 

•  Role of other multipole states  

•  Q-value effect 



Angular distribution 

With light ions at forward angles one excites 
selectively 0+ states  
The excited states in 114Sn are  of proton character at Z=50 
closed shell 
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Bohr and Mottelson 

Vibrational pairing spectrum around closed shell: 
  neutron case around 208Pb 

Pb isotopes 



Proton pairing vibration at Z=50 closed shell 
He3,n reactions 
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112Sn(p,t)110Sn 
Lowest 0+,2+,4+ states 
Guazzoni etal 

Obs: Cross section to 0+ state order of magnitude  
larger at 0o degrees 



Angular distribution  
Situation different for heavy-ions induced pair 

transfer processes: angular distributions are 
always peaked around the grazing angle, 
independently of the multipolarity 
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Higher multipolarities 

Far from the very forward angles the pairing  
vibrational states are overwhelmed by states 
with other multipolarities 

Example: 
predicted total cross sections in 
120Sn(p,t)118Sn* reaction 



GPV 

Bortignon and AV 

Searching the Giant Pairing Vibration ……. 



Bump at 10 MeV 
does not come  
from GPV, but  
from incoherent 
sum of different 
multipolarities  



Q-value effect 

Keeping fixed any other parameter, the
 probability for populating a definite final
 channel depends on the Q-value of the reaction. 
 The dependence (in first approximation a
 gaussian distribution centered in the optimum
 Q-value) is very strong in the case of heavy-ion
 induced reactions, weaker in the case of light
 ions. 

The optimum Q-value depends on the angular
 momentum transfer and on the charge of the
 transferred particles. In the specific case of
 L=0 two-neutron transfer, the optimal Q-value
 is zero. 
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Playing with different combinations of projectile/target  
(having different Qgg-value) one can favour different  
energy windows 

Example: Target 208Pb  Final 210Pb (at bombarding energy 
  Ecm = 1.2 Ebarrier) 

gs 

excited states 



The width of the Q-value window increases 
 with the bombarding energy 

gs 



   The pairing strength is therefore modulated by 
the Q-value cut-off to yield the final two-particle 
cross section 
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As a result, the correlated states may be populated 
in a much weaker way than uncorrelated states  

Example: 96Zr+40Ca, leading 
to 42Ca 
In this case is  
favored the excitation  
of an uncorrelated 0+ state 
at about 6 MeV 

Corradi, Pollarolo etal, LNL 
gs 



Models for two-particle transfer reactions 



Example      (t,p) 

Quantal 

DWBA: one step       di-neutron transfer 

Microscopic construction of the di-neutron transfer 
form factor 
(Glendenning or Bayman-Kallio methods) 

Options: 
zero range :  only relative cross-sections 
or  
finite range : absolute cross sections  
(but needs the use of proper triton wf) 



Macroscopic approach 

Complete parallelism with inelastic excitation of collective
 surface modes (vibrations and rotations in gauge space) 

Reaction mechanism: one step transfer produced by a new
 generalized pair field  

F ( r ) =  βP dU/dA = βP (R/3A) dU/dr 

Where the ‘’deformation’’ parameter βP  is the pair
-transfer matrix element and contains all the microscopy
 of the approach 

Very simple, appropriate for situations with many other
 coupled open channels 
Problem: recoil? Relative cross sections? 



Semi-microscopic approach 

Reaction mechanism: one-step di-neutron (cluster)
 transfer 

Microscopy: Formfactor obtained by double-folding the
 microscopic pair densities of initial and final states 
with some nucleon-nucleon interaction 
or 
Simple folding of microscopic pair density in the target
 with the one-body mean field of the projectile 



Fully microscopic approach   (cf. talks by Vigezzi and
 Potel) 

Reaction mechanism: Sequential two-step process (each
 step transfers one particle) 

Microscopy: Pairing enhancement comes from the
 coherent interference  of the different paths through
 the different intermediate states in (a-1) and (A+1)
 nuclei, due to the correlations in initial and final wave
 functions 

Building blocks: single-particle formfactors and wf’s 

Problems: quantal calculations rather complex (taking
 into account full recoil), semiclassical more feasible
 (but approximate treatment of recoil) 
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Basic blocks: single particle formfactors 

1d5/2 3p1/2 16O 208Pb 

F λ (r) = ∫φ in V φ fin ds 

dependence on the 
binding energy 

3p1/2 (in Pb)   ⇒    1d5/2 (in O) 
λ = 3 



All microscopy and nuclear structure information are
 contained in the two-particle transfer amplitudes
 (from correlated initial and final wave functions),

 which give the weight of each two-step path, and in
 the single particle transfer formfactors, which need

 single particle wavefunctions in target and
 projectile 

Obs: Basic idea: dominance of mean field, which
 provides the framework for defining the single

-particle content of the correlated wave functions 



1-particle transfer (d5/2) 

2-particle transfer (d5/2)2 

           σT=1.98 mb 

2-particle transfer (correlated) 
                σT=3.90 mb 

208Pb(16O,17,18O)207,206Pb 

Example of calculation 

Obs: to get cross sections one needs optical potentials 
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Maglione, Pollarolo, Vitturi, Broglia, Winther 



Other recent calculations in the talks by Enrico 
Vigezzi and Gregory Potel 

Example: (p,t) reactions on Sn isotopes 
(typical example of pairing rotational band) 



Vigezzi etal 

Importance of different  
two-particle trasfer  
mechanisms 
(dependence on the 
bombarding energy) 



Basic problem: 

how is changed the picture as we move closer  
or even  beyond the drip lines? 



Data from GANIL, Navin etal, 2011 



Extremely difficult to extract the fundamental σ2/σ1 ratio 



11Li+p -> 9Li+t 

Data from ISAC-2, 
TRIUMF 

Isao Tanihata etal 

9Li+t 

10Li+d 
(absent) 



Sensitivity to  
the pairing function 
in 11Li 

P0: 3% of (s1/2)2 

P2: 31% of (s1/2)2 

P3: 45% of (s1/2)2 

Tanihata, Thompson 



Potel etal, PRL, 2010 

11Li+p -> 9Li+t 
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Two-particle trasfer will proceed mainly by 
constructive interference of successive transfers  
through the (unbound) continuum intermediate states	


Systems  
at the drip
 lines 
(intermediate 
 unbound 
states) 

|A=2> = ∫ dE X(E) [a+(E)a+(E)]0 |A> 



Discretized 
continuum	
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The integration over the continuum intermediate states 
can becomes feasible by continuum discretization: 
but how many paths should we include? Thousands or few, 
for example only the resonant states?	




For weakly-bound systems at the drip lines it is 
mandatory to include in the models the positive energy 
part of the spectrum.  If one wants to still use the same 
machinary used with bound states, the most popular 
approach is the discretization of the continuum.  But the 
discretization MUST go in parallel in a consistent way 
both in the structure and in reaction parts. 



All discretization procedures are equivalent as long
 as a full complete basis is used.  In practice all 
 procedudes contain a number of parameters and
 criteria, that make not all procedures equally
 applicable in practical calculations. Computational
 constraints may in fact become a severe problem. 
As possibilities we can consider  
• diagonalization in a basis given by HO wave functions 
• impose boundary conditions in a BOX 
• the case of discretized wave functions with 
scattering boundary conditions (CDCC) 
•  Gamow states (complex energies) 



            Case of non-resonant continuum  
(Woods-Saxon single-particle potential  in a HO basis) 



Case of resonant + non-resonant continuum 



One-particle transfer (in DWBA) 
Case of resonant + non-resonant continuum 



Moving from the case of just one particle in the continuum
 to cases with more particles in the continuum 

Simple test case in structure 
Two valence particles, moving in a    one-dimensional  
Woods-Saxon potential V0, interacting via a residual 
density-dependent short-range attractive interaction. 
Modelling a drip-line system, one can choose the Fermi
 surface in such a way that there are no available bound
 states, and the two unperturbed particles must be in the
 continuum.  The residual interaction  

V(x1,x2) = V0 δ(x1-x2) ρ((x1+x2)/2)/ρ0 
can be chosen in such a way that the final correlated wave

 function is however bound.  Such a system is normally
 called “Borromean” 



Diagonalization in a box 

WS single-particle states obtained imposing
 boundary conditions at a box (R=20 fm) 
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Correlated energy of the two-particle system 
(as a function of the box radius)	


physical two-particle
 bound state	


unphysical two
-particle states
 (basis dependent)	




The value of the binding energy is converging  
(with some oscillations) to the final value 



Energy already practically correct with a box 
of 15 fm, but what about the wave function?  
In particular, how does it behave in the tail? 



Energy already practically correct with 
Rbox=15fm, but what about the wave 

function?  
In particular, how does it behave in the 
tail, essential for a proper description, 

e.g., of pair-transfer processes? 

Radial dependence          δρ(x,x)    



Logaritmic scale	
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Pairing matrix element to the ground state  
(two-particle creation matrix element) 



Pair strength to excited states 

Example: Pair matrix element to a generic “discretized” state 
               in the continuum  

Box radius (fm) 

T 0
 

Two-body wave function 



Similar results have been obtained by the 
diagonalization in a harmonic oscillator basis 
(with similar results, now as a function of the number of  
HO shells).  Correct behavior on the tail and converged  
two-particle matrix element require very large number of  
Shells (even more than 100 ….) 



Conclusions: 
There is a non-trivial connection between

 pairing correlations and two-particle
 transfer cross-sections. 

The connection is even more complicated in
 the case of weakly-bound systems due to the

 role of continuum states, which are not
 easily incorporated in standard reaction

 frameworks. 


