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Open Quantum Systems

Open quantum system consists of:
» Discrete system Hp
> Embedded in a larger system (continuum) H

> Coupled via Hp

Prototype Model: semi-infinite chain with end-point impurity




Open Quantum Systems: Prototype model

Prototype:
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Short-time deviations from exponential decay

For decades it has been known that deviations from exponential decay exist
in quantum systems at least on very short and very long time scales.

C. B. Chiu, B. Misra, and E. C. G. Sudarshan, Phys. Rev. D 16, 520 (1977).
J. Martorell, J. G. Muga, and D. W. L. Spring, Lect. Notes. Phys. 789, 239 (2009).

Short time scales typically give rise to parabolic decay: P(t) ~

» Quantum Zeno effect =» repeated measurements result in
decelerated decay

» quantum anti-Zeno effect =» accelerated decay

> Experimental confirmation — ultra-cold sodium atoms initially
trapped in accelerating optical potential:

S. R. Wilkinson, C. F. Bharucha, M. C. Fischer, K. W. Madison, P. R. Morrow,
Q. Niu, B. Sunduram, and M. G. Raizen, Nature (London) 387, 575 (1997).

M. C. Fischer, B. Gutiérrez-Medina, and M. G. Raizen, Phys. Rev. Lett. 87, 040402
(2001).



Long-time deviations from exponential decay

Long time deviations intimately connected with the continuum threshold.

> Mathematically proven for quantum systems:

L. A. Khalfin, Soc. Phys. JETP 6, 1053 (1958).
M. N. Hack, Phys. Lett. A 90, 220 (1982).

> Typically gives rise to inverse power law decay

ical asymptotic decay law: P(t) ~ t-3



Formalism: survival probability for an
initially prepared state

2

Survival probability:  P(t) = |A(l‘)

N
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background integral




Physical motivations: bound state at threshold

question: what happens as bound

state approaches continuum threshold?
11 Z

Answer: the long-time non-exponential decay effects will be amplified as
bound state approaches the threshold.

Note that bound state transitions to anti-bound state (219 sheet) after
reaching threshold




Relevant studies 1n the literature

T. Jittoh, S. Matsumoto, J. Sato, Y. Sako, and K. Takeda, Phys. Rev. A 71, 012109
(2005).

Radial potential: for s-wave component, as energy of initially prepared
state approaches threshold, exponential decay suppressed completely.

(However, they do not consider bound states).

Victor Dinu, Arne Jensen, and Gheorge Nenciu, J. Math. Phys. 50, 013516 (2009).

ical physics perspective, authors study a




Prototype model: continuum and discrete spectra

Return to prototype:
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Prototype model: continuum spectrum

take continuum limit and introduce half-chain Fourier series:

H=edd+ [ eclc, + [ Vicld+dc)

| / (N — o)
ontinuum:




Prototype model: discrete spectrum

Obtain the discrete spectrum from:

(a

Linear dispersion:

d) = & polynomial
z—-H

| yields linear
‘ > Z-€, —Z(Z)




Prototype model:
Bound state absorption into continuum

Solution given from slightly re-written dispersion:

lz—ed —4/z2°-1=0
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Note that the root vanishes for z = £1, which occurs at:




Prototype model: linear dispersion plot

_ 1
zL(sd)=£d+K
d

we have purely no
decay for |g4| < 1/2




Long-time dynamics for prototype model

Imz
Focus on the purely non-exponential case: 21

vicinity of lower threshold




Long-time dynamics: near zone and far zone
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A;z(t) = f dz e” \/S i

ZRiE, r* A +z—
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Consider the timescale: 1 <<t << (AQ)_1 (Long-time ‘near zone”’)




Long-time dynamics: numerical results for

prototype model
- 9=0.5, ¢ ==0.5
o0 | o g=0.5, e =-0.4|




Long-time dynamics for general open quantum
systems

Similar effect observed in the following works:
S. Longhi, Phys. Rev. Lett. 97, 110402 (2006).
S. Garmon, Ph.D. thesis, University of Texas at Austin (2007).

Axel D. Dente, Raul A. Bustos-Martn, and Horacio M. Pastawski, Phys. Rev. A 78,
062116 (2008).

Straight-forward to demonstrate: time scale separating near and far
zones should always be inversely related to A, in OQS




Further demonstration: bound state trapped
below threshold

Side-coupled impurity model (or T-model):

N2 -2 -1 0 1 2 ... N2

g, =@ o o o—----
-1/2 I _g
€4q




Side-coupled impurity model:
van Hove singularities

H=¢ d'd +f_ﬂ8kc G +f:Vk(czd+chk)

DOS singularities at E, =+B

Ek = —cosk B

Lo ---T --------- —
075 7/
/ 025 p(Ek)_

1 ~0.25




Side-coupled impurity: bound state trapped
below threshold

We again find (quartic) dispersion from 2
resolvent method: 7—E =

~—__ van Hove DOS singularity prevents
‘persistent bound state’ reaching threshold




Long-time dynamics for bound state trapped
below threshold

Bound state eigenvalue expansion:

} y 1
7 =—1-A +0(¢°) with A = i

n the near zone:




Long-time dynamics: numerical results for
side-coupled impurity model

——9=0.1, ¢ ,=-0.5
——g=0.2, ed=—0.5

10} ——0=0.3, ¢ =-0.5
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Due to bound states, resonance, difficult to see much




Conclusions

Bound state influence on long time dynamics in OQS:
» Bound state transition to anti-bound state at continuum threshold

> Purely non-exponential dynamics when only anti-bound states
are present

> Long time dynamics for prototype model:
> Long-time near zone: P(t) ~ t!
ime far zone: P(t) ~ t3




