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Outline: 

Deviations from exponential decay in quantum mechanics: 
   Short time scales – quantum Zeno and anti-Zeno effects 
   Long time scales – connection with continuum threshold 

Prototype model – linear case: 
   Bound state transition to anti-bound state (virtual state) 
   Long time dynamics: long-time near zone P(t) ~ t-1 
   Long-time far zone P(t) ~ t-3 
   Timescale set by ΔQ – gap between bound state and threshold 

Survival Probability Formalism and Physical Motivation: 
   Relevant studies in the literature 

Side-coupled impurity model: 
  Bound state trapping below threshold 

Orientation: description of open quantum systems and prototype model 



Open Quantum Systems 

Open quantum system consists of: 

   Coupled via HDC 
   Embedded in a larger system (continuum) HC 

   Discrete system HD 

Prototype Model: semi-infinite chain with end-point impurity 

continuum: HC 
discrete  
component: HD 
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Open Quantum Systems: Prototype model 

Prototype: 
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Short-time deviations from exponential decay 

For decades it has been known that deviations from exponential decay exist 
in quantum systems at least on very short and very long time scales. 

C. B. Chiu, B. Misra, and E. C. G. Sudarshan, Phys. Rev. D 16, 520 (1977). 

J. Martorell, J. G. Muga, and D. W. L. Spring, Lect. Notes. Phys. 789, 239 (2009). 

Short time scales typically give rise to parabolic decay:  P(t) ~ t2  

   Experimental confirmation – ultra-cold sodium atoms initially 
     trapped in accelerating optical potential: 

   quantum anti-Zeno effect  accelerated decay 

   Quantum Zeno effect  repeated measurements result in 
     decelerated decay 

S. R. Wilkinson, C. F. Bharucha, M. C. Fischer, K. W. Madison, P. R. Morrow, 
Q. Niu, B. Sunduram, and M. G. Raizen, Nature (London) 387, 575 (1997). 

M. C. Fischer, B. Gutiérrez-Medina, and M. G. Raizen, Phys. Rev. Lett. 87, 040402 
(2001). 



Long-time deviations from exponential decay 

Long time deviations intimately connected with the continuum threshold.  

   Mathematically proven for quantum systems: 

L. A. Khalfin, Soc. Phys. JETP 6, 1053 (1958). 
M. N. Hack, Phys. Lett. A 90, 220 (1982). 

   Typically gives rise to inverse power law decay 

   Typical asymptotic decay law:  P(t) ~ t -3 

   Recent experimental verification: luminescence decay properties of 
     dissolved organic materials following laser excitation:  

C. Rothe, S. I. Hintschich and A. P. Monkman, Phys. Rev. Lett. 96, 163601 (2006). 



Formalism: survival probability for an 
initially prepared state 

Survival probability: 
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Physical motivations: bound state at threshold 
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question: what happens as bound 
state approaches continuum threshold? 

Answer: the long-time non-exponential decay effects will be amplified as 
bound state approaches the threshold. 

Note that bound state transitions to anti-bound state (2nd sheet) after 
reaching threshold 



Relevant studies in the literature 

Radial potential: for s-wave component, as energy of initially prepared 
state approaches threshold, exponential decay suppressed completely. 

T. Jittoh, S. Matsumoto, J. Sato, Y. Sako, and K. Takeda, Phys. Rev. A 71, 012109 
(2005). 

(However, they do not consider bound states). 

Victor Dinu, Arne Jensen, and Gheorge Nenciu, J. Math. Phys. 50, 013516 (2009). 

From mathematical physics perspective, authors study a bound state near 
threshold.  Unfortunately, they make several unphysical assumptions. 

(e.g. Discrete unperturbed energy appearing at threshold cannot form a  
bound state below threshold??) 

Other relevant studies  TBA 
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Prototype model: continuum and discrete spectra 

Return to prototype: 
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Prototype model: continuum spectrum 

take continuum limit and introduce half-chain Fourier series: 

€ 

H = ε
d
d†d + ε

k0

π

∫ c
k
†c

k
 + V

k0

π

∫ (c
k
†d + d†c

k
)

€ 

N →∞( )

€ 

ε
k

= −cosk

€ 

k ∈ 0,π[ ] on 

Continuum: 

p

-1

1

€ 

ε
k

€ 

k threshold 



Prototype model: discrete spectrum 

Obtain the discrete spectrum from: 
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dispersion more carefully… 



Prototype model: 
Bound state absorption into continuum 
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Solution given from slightly re-written dispersion: 

Note that the root vanishes for            , which occurs at:  
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These are the points where solution crosses one Riemann sheet 
into the other (localization/delocalization). 
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Prototype model: linear dispersion plot 

bound state 

transitions to 
anti-bound state 

we have purely non-exponential 
decay for |εd| < 1/2 
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Long-time dynamics for prototype model 

Focus on the purely non-exponential case: 

vicinity of lower threshold 
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Long-time dynamics: near zone and far zone 
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Consider the timescale: 
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Note that for ΔQ = 0, the near zone becomes fully asymptotic 



Long-time dynamics: numerical results for 
prototype model 
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g=0.5, εd=−0.5

g=0.5, εd=−0.4

S. Garmon, T. Petrosky, L. Simine, and D. Segal, Fortschritte der Physik,  
DOI: 10.1002/prop.201200077; arXiv:1204.6141. 



Straight-forward to demonstrate: time scale separating near and far 
zones should always be inversely related to ΔQ in OQS 

Long-time dynamics for general open quantum 
systems 

S. Garmon, T. Petrosky, L. Simine, and D. Segal, Fort. Physik,  
DOI: 10.1002/prop.201200077; arXiv:1204.6141 (2012). 

Similar effect observed in the following works: 

S. Longhi, Phys. Rev. Lett. 97, 110402 (2006). 

S. Garmon, Ph.D. thesis, University of Texas at Austin (2007). 

Axel D. Dente, Raúl A. Bustos-Marún, and Horacio M. Pastawski, Phys. Rev. A 78, 
062116 (2008). 

The transition from bound to anti-bound states also leads to a maximum 
in the local density of states: 

Raúl A. Bustos-Marún, Eduardo A. Coronado, and Horacio M. Pastawski,  
Phys. Rev. B 82, 035434 (2010). 



Further demonstration: bound state trapped 
below threshold 

(a) Model I: infinite geometry 
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Side-coupled impurity model (or T-model): 
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Side-coupled impurity model: 
van Hove singularities 
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Side-coupled impurity: bound state trapped 
below threshold 

We again find (quartic) dispersion from  
resolvent method: 
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van Hove DOS singularity prevents  
‘persistent bound state’ reaching threshold 

S. Garmon, H. Nakamura,  
N. Hatano, and T. Petrosky, 
Phys. Rev. B 80, 115318 
(2009). 



Long-time dynamics for bound state trapped 
below threshold 
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Bound state eigenvalue expansion: 

In the near zone: 
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Hence closing the gap requires εd goes to infinity, which kills the 
effect in any case. 



Long-time dynamics: numerical results for 
side-coupled impurity model 
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g=0.1, εd=−0.5

g=0.2, εd=−0.5

g=0.3, εd=−0.5

Due to bound states, resonance, difficult to see much 



Conclusions 

Bound state influence on long time dynamics in OQS: 

   Bound state transition to anti-bound state at continuum threshold 

   Purely non-exponential dynamics when only anti-bound states 
     are present 

   Long time dynamics for prototype model: 
   Long-time near zone: P(t) ~ t-1 
   Long-time far zone: P(t) ~ t-3 

   Amplification of non-Markovian decay as bound state transitions 
     to anti-bound state; near zone becomes asymptotic dynamics 


