How parameters of light-flavor baryon resonances are extracted from experimental data?

Hiroyuki Kamano Research Center for Nuclear Physics (RCNP) Osaka University

Workshop on "Resonances and non-Hermitian systems in quantum mechanics" YITP, Kyoto, December 11-13, 2012

1. "Hadron" and "Hadron Spectroscopy"

2. Reaction analysis for light-flavor baryon (N* and Δ *) spectroscopy

3. Multichannel reaction dynamics in N* and Δ* spectroscopy

"Hadron" and "Hadron Spectroscopy" (1 of 3)

What's a hadron ??

Hadron = Composite particle made from quarks, anti-quarks, and gluons

Besides nucleons and pions, there exist *MANY* hadrons due to excitations of internal degrees of freedom of hadrons and variety of quark "flavors" !!

→ pion

q

Meson

Specify six types of quarks: up(u), down(d), strange(s), charm(c), bottom(b), top(t)

Reaction analysis for light-flavor baryon (N* and Δ *) spectroscopy (2 of 3)

Pion- and photon-induced meson production reactions off nucleon

Approaches for reaction analysis for light-flavor baryon spectroscopy

Multichannel unitary condition:

$$T_{ab}(E) - T_{ab}^{\dagger}(E) = -2\pi i \sum_{c} T_{ac}^{\dagger} \delta(E - E_c) T_{cb}(E)$$

- > Ensures conservation of probabilities in multichannel reaction processes.
- Ensures proper analytic structure of amplitudes (branch points etc) in complex energy plane.

Heitler equation:

K(E) should be hermitian.

$$T_{ab}(E) = K_{ab}(E) + \sum_{a} K_{ac}(E) \left[-i\pi\delta(E - E_c) \right] T_{cb}(E)$$

K-matrix (on-shell) approach:

 $K_{ab}(E) \equiv$ (Polynomials of *E*)

Bonn-Gatchina, Carnegie Mellon-Berkely, George Washington U, Giessen, Karlsruhe-Helsinki

Numerical cost: expensive
Suitable for studying dynamical contents of resonances

 Cannot address dynamical contents (structure, production mechanism) of

Numerical cost: cheap

resonances

> Dynamical approach:

Our approach !!

 $K_{ab}(E) \equiv K_{ab}(\vec{p}_{a}, \vec{p}_{b}; E) = V_{ab}(\vec{p}_{a}, \vec{p}_{b}; E) + \sum_{c} \mathcal{P} \int d\vec{q} V_{ac}(\vec{p}_{a}, \vec{q}; E) \frac{1}{E - H_{c}^{0} + i\varepsilon} K_{cb}(\vec{q}, \vec{p}_{b}; E)$

ANL-Osaka/EBAC-JLab, Dubna-Mainz-Taipei, Juelich

For historical summary for N* and Δ * baryon spectroscopy, see: http://pdg.lbl.gov/2012/reviews/rpp2012-rev-n-delta-resonances.pdf

Pion-nucleon elastic scattering

Multichannel reaction dynamics in N* and Δ* spectroscopy (3 of 3)

How can we extract N* information?

PROPER definition of

✓ N* mass and width

- ➔ Pole position of the amplitudes
- ✓ $N^* \rightarrow MB$, gN decay vertices
- → Residue of the pole

Need analytic continuation of the amplitudes !!

→ Suzuki, Sato, Lee, PRC79 025205 (2009); PRC82 045206 (2010).

N* pole position (Im(E₀) < 0)

Resonance poles of \pi N partial wave amplitude in complex energy plane

Delta(1232) : The 1st P33 resonance

Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL104 042302 (2010)

Two-pole structure of the Roper P11(1440)

Dynamical origin of P11 resonances

Suzuki, Julia-Diaz, Kamano, Lee, Matsuyama, Sato, PRL104 042302 (2010)

Three P11 N* poles are generated from a **same**, **single** bare state!

Multi-channel reactions can generate many resonance poles from a single bare state.

Eden, Taylor, Phys. Rev. 133 B1575 (1964)

Evidences in hadron and nuclear physics are summarized e.g., in Morgan and Pennington, PRL59 2818 (1987)

Dynamical origin of P11 resonances

Thank you for your attention!

Pion-nucleon elastic scattering

Figures are from M. Pennington's talk

Dynamical coupled-channels analysis of meson production reactions

Objectives and goals:

Through the comprehensive analysis of world data of pN, gN, N(e,e') reactions,

- Determine N* spectrum (pole masses)
- Extract N* form factors (e.g., N-N* e.m. transition form factors)

Provide reaction mechanism information necessary for interpreting N* spectrum, structures and dynamical origins

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

Amplitudes of two-body meson-baryon reactions

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

Electromagnetic amplitudes in the DCC model

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

E.M. current interactions are treated perturbatively.

Analysis database and procedure

		Naves $\#$	of data	Waves \neq	\neq of data			$d\sigma/d\Omega$	P	R a	Sum
	$\pi N \to \pi N \text{ PWA}$	S_{11}	56×2	D_{13}	52×2		$\pi^- p \to \eta p$	294	-		294
		S_{31}	56×2	D_{15}	52×2						
Pion-induced		P_{11}	56×2	D_{33}	50×2		$\pi^- p \to K^0 \Lambda$	544	262		806
reactions		P_{13}	52×2	D_{35}	31×2		$\pi^- p \to K^0 \Sigma^0$	215	70		285
(puroly strong		P_{31}	52×2	F_{15}	39×2		$\pi^+ p \to K^+ \Sigma^+$	552	312		864
(purely strong		P_{33}	56×2	F_{17}	23×2		1				
interactions)				F_{35}	34×2		Sum	1605	644		2249
				F_{37}	35×2			1000	011	_	2210
						1					
				Sum	1288						

More than 20,000 data points to fit

		$d\sigma/d\Omega$	Σ	T	P	G	H	E	F	$O_{x'}$	$O_{z'}$	$C_{x'}$	$C_{z'}$	$T_{x'}$	$T_{z'}$	$L_{x'}$	$L_{z'}$	sum
	$\gamma p \to \pi^0 p$	8290	1680	353	557	28	24	-	-	-	-	-	-	-	-	-	-	10860
	$\gamma p \to \pi^+ n$	5384	1014	661	221	75	123	-	-	-	-	-	-	-	-	-	-	7478
Photo- production reactions	$\gamma p \to \eta p$	1076	197	50	-	-	-	-	-	-	-	-	-	-	-	-	-	1323
	$\gamma p \to K^+ \Lambda$	611	118	69	410	-	-	-	-	66	66	89	89	-	-	-	-	1518
	$\gamma p \to K^+ \Sigma^0$	2949	116	-	320	-	-	-	-	-	-	5 2	52	-	-	-	-	3489
	Sum	18310	3043	1133	1508	103	147	-	-	66	66	141	141	-	-	-	-	24668

Meson cloud effect in gamma N \rightarrow N* form factors

 $G_M(Q^2)$ for g N \rightarrow D (1232) transition b N-A TRANSITION Μ • ₹ ¢ BATES MAMI **MESON** JLAB/CLAS JLAB/HALL A CLOUD 0.8 JLAB HALL C EFFECT 0.6 Full 0.4 Bare 0.2 10-1 1 $Q^2 (GeV^2)$

N, **N***

Note: Most of the available static hadron models give $G_M(Q^2)$ close to "Bare" form factor.

f₀(980) in pi-pi scattering

