Internal structure of the resonant Λ(1405) state in chiral dynamics

Takayasu Sekihara (KEK)

in collaboration with

Tetsuo Hyodo (Tokyo Inst. Tech.)

and Daisuke Jido (YITP, Kyoto)

T. S., T. Hyodo and D. Jido, *Phys. Lett.* <u>B669</u> (2008) 133-138.
 T. S., T. Hyodo and D. Jido, *Phys. Rev.* <u>C83</u> (2011) 055202.

Resonances and non-Hermitian systems in quantum mechanics @ YITP, Kyoto Univ. (Dec. 11 - 13, 2012)

Contents

1. Introduction

2. Photo-coupled scattering amplitudes

3. Results

4. Summary

++ Abstract ++ $\hbar = c = 1$

- We want to measure the spatial size of the resonance systems.
- --- Spatial size is one of the important properties of the system.

□ Stable systems:
$$\rho(r) = \psi^*(r)\psi(r)$$
 $\langle r^2 \rangle = \int d^3r \, \psi^*(r)\hat{r}^2\psi(r)$

- But, in general, wave functions of the unstable resonance states are not normalized due to the decay mode.
- Instead of evaluating the wave function, we determine the form factors, the Fourier transformation of the density, of unstable resonance states directly from the scattering amplitudes.

$$F(Q^2 \equiv -\vec{q}^2) = \int d^3r \, e^{i\vec{q}\cdot\vec{r}}\rho(r) \quad \blacksquare$$

-- On the resonance pole.

--- Form factor is well-defined in this approach, but <u>complex value</u>. --> Mean squared radius is "defined" as: $\langle r^2 \rangle \equiv -6 \frac{dF}{dQ^2} \Big|_{Q^2=0}$

--- They become real values in small decay width limit.

++ Strong interaction and hadrons ++

- Our research field: strong interaction and hadron physics.
- --- <u>Strong interaction is one of the 4 fundamental forces in the World.</u>
 - Gravity
 Weak interaction
 Strong interaction
- Particles which interact with each other via the strong interaction
 Hadrons. [ex.), proton (p), neutron (n), pion (π), ...]
 Many hadrons (about 300) have been discovered.
- It is commonly accepted that hadrons are composed of quarks, which <u>carry color degrees of freedom</u>. Greenberg ('64), Han-Nambu ('65).
 Hadrons are "white" with respect to the color.

++ Strong interaction and hadrons ++

Baryon $(p, n, \Lambda, ...)$

 From the modern viewpoint, the strong interaction is consequence of the quantum quark(-gluon) dynamics.
 <u>Quantum ChromoDynamics (QCD), SU(3) gauge theory</u>.

QCD (or quantum quark dynamics) confines quarks and generates hadrons.

++ Strong interaction and hadrons ++

Let us see the typical scales of the strong interaction:

	Typical force range	Typical life time	Typical coupling strength (α)	
Strong	$1 \text{fm} = 10^{-15} \text{m}$	10^{-23} s	1	,
EM	∞	10^{-20} s	1/137	
Weak	$1/M_W \sim 10^{-18} { m m}$	$\gtrsim 10^{-12} \mathrm{s}$	10^{-6}	

--- <u>Strong interaction is indeed "strong"</u>.

 Almost all hadrons are unstable with respect to the strong interaction.

ex.) $\Delta^{++}(1232) \rightarrow \pi^{+} + p$ via the strong interaction.

++ Hadron structure ++

Ordinary hadrons are composed of qqq (baryon) or qq (meson).
 --- Consistent with the quark model.

Resonances and non-Hermitian systems in quantum mechanics @ YITP, Kyoto Univ. (Dec. 11 - 13, 2012)

7

++ Hadron structure ++

- However, some hadrons may have exotic structure rather than qqq or qq (but white!). --- Exotic hadrons.
- <u>Compact multi-quark systems</u>, <u>hadronic bound states</u>, ...
 Candidates: Λ(1405), the lightest scalar mesons, *X Y Z*, ...

- Problem: <u>"number of valence quarks" is not a good classification.</u> **ex.)** $|\Lambda(1405)\rangle = C_{uds}|uds\rangle + C_{\bar{K}N}|\bar{K}N\rangle + C_{uud\bar{u}s}|uud\bar{u}s\rangle + \cdots$
- --- One can observe mass, width, branching ratios, ... of hadrons, not the number quark of valence quarks.
- If a hadron is dominated by the bound state component of constituent hadrons, its coefficient [C_{KN} for Λ(1405)] will be large.
 But what is the "good" observables to discriminate it?
- --> The spatial size will be sensitive to the coefficient (*C_{KN}*). --- Large spatial size <--> large coefficient *C_{KN}*.

So, we want to <u>determine the spatial structure of resonance states</u>.

++ "Strange" baryon resonance $\Lambda(1405)$ ++ • $\Lambda(1405)$ --- Mass = 1406 ± 4 MeV, width = 1/(life time) = 50 ± 2 MeV, decay to $\pi\Sigma$ (100 %), *I* (*J*^{*P*}) = 1 (1/2⁻⁻). PDG

Why is Λ(1405) the lightest excited baryon with J^p = 1/2--?
 --- Λ(1405) has a strange quark, which should be ~ 100 MeV heavier than up and down quarks.

--- $\Lambda(1405)$ is a \overline{KN} quasi-bound state ??? Dalitz and Tuan ('60), ...

 Our final goal: <u>confirmation of the meson-baryon molecule picture</u> in experiments (as well as pole position etc.).

<-- " $\Lambda(1405)$ size" will be an important "observable". --- " $\Lambda(1405)$ size" is also important for kaon-nucleus bound states.

++ Dynamically generated $\Lambda(1405)$ ++

- Chiral unitary model (ChUM) dynamically generates $\Lambda(1405)$

in mesons and baryons degrees of freedom.

Kaiser-Siegel-Weise ('95), Oset-Ramos ('98), Oller-Meissner ('01), Jido et al. ('03), ...

- --- <u>Based on spontaneous breaking of chiral symmetry in QCD</u> + <u>Scattering unitarity.</u>
- In ChUM Λ(1405) is dynamically generated
 without explicit resonance poles. Hyodo et al. Phys. Rev. <u>C78</u> 025203.
 --- Λ(1405) in the meson-baryon interaction picture.
- Then, how about internal structure, or spatial size of $\Lambda(1405)$? --> <u>We probe internal structure of $\Lambda(1405)$ in ChUM.</u>

Resonances and non-Hermitian systems in quantum mechanics @ YITP, Kyoto Univ. (Dec. 11 - 13, 2012)

++ How to probe the structure ? ++

Usual approach:

Interaction --> (NR or Rel.) potential

--> Schrödinger Eq. etc.

--> wave function

--> density distributions

e.g. Akaishi-Yamazaki ('02), Dote-Hyodo-Weise ('09).

2. Photon-coupled amplitudes

++ Matrix elements in scattering amplitude ++ Define form factors as matrix elements of the resonance:

$$\langle Z_{\mathrm{R}}|J^{\mu}|Z_{\mathrm{R}}
angle_{\mathrm{Breit}} = \left(F_{\mathrm{E}}(Q^{2}), F_{\mathrm{M}}(Q^{2})\frac{i\boldsymbol{\sigma}\times\boldsymbol{q}}{2M_{\mathrm{p}}}
ight) \qquad \rho(r) = \int \frac{d^{3}Q}{(2\pi)^{3}}e^{-i\boldsymbol{q}\cdot\boldsymbol{r}}F(Q^{2})$$

---- Straightforward extension from the stable systems.

These matrix elements appear in the photon-coupled scattering amplitudes T_{γ} close to the pole position as:

So the matrix elements can be extracted from residue of pole:

$$\operatorname{Res}\left[-rac{T_{\gamma i j}^{\mu}}{T_{i j}}
ight]_{\operatorname{Breit}} = \left(F_{\operatorname{E}}(Q^2), \, F_{\operatorname{M}}(Q^2)rac{i \boldsymbol{\sigma} imes \boldsymbol{q}}{2M_{\operatorname{p}}}
ight)$$

- Then, how T_{γ} (double pole !) is determined in ChUM ?

2. Photon-coupled amplitudes

++ Photon-coupled amplitudes in ChUM ++
 For Λ(1405) in meson-baryon interaction picture, photon couples to the intermediate mesons, baryons, and WT vertices.

--> Double-pole diagrams, which contribute to T_{γ} on the pole, are: Borasoy et al. Phys. Rev. C72 065201; T. S. et al. Phys. Lett. <u>B669</u> 133. $\operatorname{Res}\left[-\frac{T_{\gamma ij}^{\mu}}{T_{ii}}\right]_{\operatorname{Proit}} = \left(F_{\mathrm{E}}(Q^{2}), F_{\mathrm{M}}(Q^{2})\frac{i\boldsymbol{\sigma}\times\boldsymbol{q}}{2M_{\mathrm{p}}}\right)$ With this approach, we have <u>Ward identity</u>: $\operatorname{Res}\left[-\frac{q_{\mu}T_{\gamma ij}^{\mu}}{T_{\nu}}\right] = 0$ --> We have <u>correct normalization</u>:

$$F_{
m E}(Q^2=0)=Q_{
m EM}, \ \ F_{
m B}(Q^2=0)=B, \ \ F_{
m S}(Q^2=0)=S$$

++ Each channel contribution to charges ++
Let us see the resonant Λ(1405) structure, dynamically generated on 1426 - 17 i MeV [higher Λ(1405) pole] in full coupled channel.
--- In order to see which channel is important for the Λ(1405) structure, we make channel decomposition to the baryon / strangeness number for Λ(1405).

• The baryon / strangeness number is dominated by \overline{KN} . --- <u>Consistent with the description of $\Lambda(1405)$ as a \overline{KN} bound state.</u>

 ++ Structure of resonant Λ(1405) state ++
 Let us see the resonant Λ(1405) structure, <u>dynamically generated</u> on 1426 - 17 i MeV [higher Λ(1405) pole] in full coupled channel.

Neutron electric form factor fit: Platchkov et al. Nucl. Phys. A510, 740.

Complex form factors for the resonant Λ(1405).
 --- <u>The imaginary parts are in smaller magnitude</u> than the real parts reflecting <u>relatively small imaginary part of the pole position</u>.

 ++ Structure of resonant Λ(1405) state ++
 Let us see the resonant Λ(1405) structure, <u>dynamically generated</u> on 1426 - 17 i MeV [higher Λ(1405) pole] in full coupled channel.

Neutron electric form factor fit: Platchkov et al. Nucl. Phys. A510, 740.

• <u>Rapid increase / decrease of the EM form factors at small Q^2 .</u> --> This implies characteristic structure of EM density for $\Lambda(1405)$!

++ Structure of resonant $\Lambda(1405)$ state ++

• Fourier transformation --> charge density ($P = 4 \pi r^2 \varrho$).

++ Structure of resonant $\Lambda(1405)$ state ++

• Fourier transformation --> charge density ($P = 4 \pi r^2 \varrho$).

Negative (positive) charge appears in outer (inner) region.
 Interpreted as that the lighter K⁻⁻ surrounds the heavier p, recalling the large KN component for the conserved charge.

++ Structure of resonant $\Lambda(1405)$ state ++

• Fourier transformation --> magnetic moment density (P = $4 \pi r^2 \varrho$).

- Spatially larger structure of $\Lambda(1405)$.
- --- Magnetic moment distribution beyond ~ 1 fm.
- <-- Large distribution of nucleon inside $\Lambda(1405)$.

++ Structure of resonant $\Lambda(1405)$ state ++ • Channel decomposition shows component of structure. --- Electric \overline{KN} component:

--> Indeed the lighter K⁻ surrounds the heavier p, as expected.

++ Structure of resonant $\Lambda(1405)$ state ++ • Channel decomposition shows component of structure. --- Electric $\pi\Sigma$ component:

<u>πΣ component shows dumping oscillation</u> as decay channel.
 --> Observe the decaying component in coordinate space, originating from that Λ(1405) exists above the πΣ threshold.

Re. part

++ Structure of resonant $\Lambda(1405)$ state ++

Baryonic and strangeness structure for $\Lambda(1405)$:

We observe widely spread *K* around *N*, and both distributions are larger than the typical nucleon size ~ 0.8 fm.
 <u>Consistent with the EM structure.</u>
 Small imaginary part and decaying πΣ part (very tiny).

4. Summary

++ Summary ++

- We have shown why we are interested in the spatial size of unstable resonance state.
- --- Spatial size of hadrons may be a key to discriminate their component. --- Hadronic bound state or others.

 $|\Lambda(1405)\rangle = C_{uds}|uds\rangle + C_{\bar{K}N}|\bar{K}N\rangle + C_{uud\bar{u}s}|uud\bar{u}s\rangle + \cdots$

- Hadrons are generated by quantum quark dynamics, but it also decays the (almost) hadrons.
- --- Due to the "strong" interaction, <u>imaginary part of the system's</u> <u>eigenvalue is not negligible compared to the real part</u>.
- --> One needs to treat (almost all) hadrons as resonance states.
- If a hadron is dominated by the bound state component of constituent hadrons, its coefficient [C_{KN} for $\Lambda(1405)$] will be large.
- --> The spatial size will be sensitive to the coefficient (C_{KN}).
 - ---- Large spatial size <--> large coefficient C_{KN}.

4. Summary

++ Summary ++

- We calculate electromagnetic, baryonic, and strangeness form factors and internal density distributions of Λ(1405) in chiral unitary approach, in which we have meson-baryon interaction picture based on chiral symmetry with Bethe-Salpeter equation.
 Structure from our form factor is consistent with expectation from quantum mechanics.
- $\Lambda(1405)$ is composed of widely spread \overline{K} around N (dominant) + escaping $\pi\Sigma$ oscillation component.
- Both K and N distributions are larger than typical nucleon size
 ~ 0.8 fm.
- --- <u>Our description of Λ(1405) in chiral dynamics is consistent with</u> <u>meson-baryon interaction picture.</u>

Thank you very much for your kind attention !

Appendix

Appendix

++ How to probe "Λ(1405) size" in Exp.? ++ There is some possibility to obtain

information of " $\Lambda(1405)$ size" from heavy ion collisions.

- --- $\Lambda(1405)$ yields estimated by the coalescence model.
- <-- Sensitive to the structure!

