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Motivation

Emission from doorway-state

A bound state is shifted to continuum
suddenly through a nuclear reaction

V.S.

Emission from single-particle resonance
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Eigenvalues of |- Magic numbers
HO potential ~<J Mayer and Jensen (1949)
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Neutron single-particle energies at N=20 for Z=8~20

solid line : full (central + tensor) dashed line : central only
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One of the Backgrounds



Nuclear Chart
- Left Lower Part -

Why is the drip line of
Oxygen so near ?
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The clue : Fujita-Miyazawa 3N mechanism
(A-hole excitation)

A particle T
m=1232 MeV ~ [~ — 7
S=3/2, 1=3/2

A
m=

Miyazawa, 2007 N N




Pauli blocking effect on the renormalization of
single-particle energy

/ ’
single

particle —s

states \
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Renormalization of
single particle energy
due to
A-hole excitation
- more binding (attractive)

m

Another valence
particle in state m'

Pauli Forbidden
> The effect is
suppressed



Most important message with Fujita-Miyazawa 3NF
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Renormalization
of single particle
energy

Effective monopole
repulsive interaction
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(i) A-hole excitation in a

Single-Particle Energy (MeV)

conventional way

(ii) EFTwith A

[ (a) G-matrix NN + 3N (A) forces
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(b) Vigw & NN+ 3N (AN'LO) forces
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(c) 3-body interaction

[
—0 00 0
0 core

(d) 3-body interaction with one
more neutron added to (c)

(iii) EFT incl. contact
terms (N2LO)

A-hole dominant
role in
determining
oxygen drip line



Energy (MeV)

O, Suzuki, Holt, Schwenk, Akaishi, PRL 105 (2010)
Ground-state energies of

oXygen isotopes ?

NN force + 3N-induced NN force

(Fujita-Miyazawa force)
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(i) A-hole excitation in a
conventional way

Single-Particle Energy (MeV)

(ii) EFTwith A

(c) 3-body interaction
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(d) 3-body interaction with one
more neutron added to (c)

In continuum,
but calculated
as a bound state

= to be discussed
now

(iii) EFT incl. contact
terms (N?LO)

A-hole dominant
role in
determining
oxygen drip line



Continuum-coupled shell model (CCSM)

Hamiltonian: H =

=T +Uws + Viyan = E g_} 1

basis state-vector (denoted by j ):
bound states + discretized continuum states

wall very far (3000 fm, ~3000 basis states)

A

d3/

@+ " = Zéjnj 0
J

approximated

by Gaussian

3

included
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: . . O, Suzuki, Holt, Schwenk, Akaishi,
(i) A-hole excitationina  (ji) EFT with A PRL 105 (2010)

conventional way

[ () G-matrix NN + 3N (A) forces
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oxygen drip line

4 i ]
(6) Viou . NN + 3N (AN'LO) forces

-—l—'—-‘

[ m—=s NN 43N (N’LO) S

LI TN L e * 1 phenomenological

---NN

I N T TN N T NN T N N | AN N T N N TN NN N N N B | She“mOdel

Single-Particle Energy (MeV)

8 14 16 20 8 14 16 20
T T T T T T T T 7T T
Neutron Number () Neutron Number (V) 4 r (b) Phenomenological forces
(c) 3-body interaction (d) 3-body interaction with one

more neutron added to (¢)

Single-Particle Energy (MeV)

(]
—0 00 0
0 core

N SN N N S [N N S S S N — |

8 14 16 20
Neutron Number (N)




V(r)

= g;(1 +ai0‘0)€’-—r2/d?

i=1,2

dy2=1.4, 0.7 fm

SDPF-M TBME = TBME of this V (r)
for HO wave functions

(151/20d3 2|V |151/20d3/2) =12
(Odg 20d3 2|V |0dg 20d3 j2) 7=0,2

under the assumption that 3-body force effect
is included in SDPF-M interaction effectively

V (r) is fixed only by interaction



240 = 220 + 2n in the space

ground state : 2nin 1s,,

excited states of 1* and 2*:

|i.]+) = |181 9 ) ld}’,)_ J+)

B

discretized continuum idyn (i = 1,2, ..

)

Is,, : solution of Woods-Saxon potential with
observed S_

diagonalize H

Eigenfunctions : |J;) =" ™" iJ )

i




Reaction mechanism

-> Doorway state



Removal of one proton and one neutron from 2¢F

knockout reaction @MSU (2009)

9Be(2°F,240)X less probable
C. Hoffman, <==large s, ,-d;,, neutron gap
M. Thoennessen et al. 1273/

~ continuum

-G

doorway state
|181/20d3/2; J,j)

bound nucleus
26|:

excited states in 240

CCSM| 7+\ _ +
H |J, ) = Ex|J,.)
ground state
1s,/, is bound.
Kanungo et al. (2009)

18



Neutron single-particle energies at N=20 for Z=8~20

solid line : full (central + tensor) dashed line : central only
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Removal of one proron and one neutron from 26F

Before the removal, neutron d,, is well-bound in 2°F
and can be described by a HO wave function.

Sudden removal -> doorway state with HO d;,,

Decay of neutron from this d;,,
through overlap with continuum states :

() = (T |15y o0dsya; TT) = 3 ) (idg 2]0ds o)

]

pi’ =167 = Spectrum of emitted neutron



Overlap [arb. unit]

Low-lying Continuum Spectra in 2*O

Doorway state ==> continuum states in 240
k). 2
pi — ’(J;;*_|(I)doorway>|2 — |ZC§ )<Zd3/2’0d3/2>|

bound approximation:

Normal shell model with the same
Hamiltonian : NO continuum effect

CCSM : With continuum effect

incl. residual interaction

no int. : With continuum effect but

no residual interaction.

I — Bound Approx.
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@ Continuum effect is about 1 MeV
@ No bound excited state.

@ 1*-2* splitting by 2-body interaction
@ 1*-2* splitting is in good agreement

with experiments.

J




Radial density (w.f.) of continuum states in 2*O

T ' T

.— HO 1
— CCSM I @ Notable difference between

-— S.P. Resonance|;

: 1* and 2* stares.

@ The peak states in CCSM
reproduce the behavior of
“resonance wave” at far
distance (phase shift of 7t/2).
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Peak Energies of neutron emission

SPE as bound state
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Continuum spectra are consistent with the shell evolution



Energy [MeV]

Convergence with respect to boundary condition
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The peak energies as a

function of L.

@ The results do not change so much if L is taken to be sufficiently large.
@ Even usual values of L~50 fm are not stable.
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Comparison to

single-particle resonance



Effective phase shift and one-body reduction

Can many-body resonance be described by effective one-body problem?

CCSM
-(@®}

CCSM: continuum spectra are
obtained by taking the overlap
between the doorway state and

CCSM eigenstates in continuum.

Effective phase shift

2309 .

We define effective phase shift by
introducing 1-body reduction of CCSM
wave function.

T = 3 10, 0 iy )

=: |151/2 ® dg /2753 J)
|&3/2;J,k; = Z ng’k)|id3/2>

One can then obtain phase shift, and can
use it for calculating the cross section.

47

= ﬁ(Zl +1)sin®d;

gJ 26



Effective phase shift and one-body reduction

G, or overlap (arb. unit)
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@ CCSM(doorway state approach )
and effective phase shift approach
give very similar results for
for peak positions.

@ Notable difference appears for the
width of 2*in %40.
- Doorway state decays faster. -

Unit : MeV 230 240

states 3/2+ 1+ 2+

CCSM E 0.92 1.35 0.61
CCSM T 0.11 0.28 0.06
Phase shift E 0.92 1.36 0.61
Phase shiftl’ 0.11 0.28 0.04

1

50 % longer
life time



tan SJ

tan SJ

Phase shift




Although resonance state and doorway state
are different, continuum spectra are similar.

What is the meaning of single-particle resonance
states in complex dynamical processes such as
multi-nucleon transfer heavy-ion reactions ???

Time scale of the heavy-ion reaction may be
shorter than the resonance life time.

Coupling to continuum lowers the (peak) energies
by more than 1 MeV for oxygen isotopes.
spectroscopy in continuum



