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OUTLINE
• Population III star formation

• Radiative transfer calculations (ray tracing)

• Population III stellar feedback

• Radiative feedback

•Mechanical & chemical feedback

• Impacts on the early galaxy formation

• Stellar populations – metallicities and star formation rates

• The role of radiation pressure
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POP III STAR FORMATION
• 3D simulations of Pop III star formation (late 1990’s and early 

2000’s)

• Two independent groups: Bromm+ and Abel+

• Gas cools to T ~ few x 100 K 

• Characterizes the Jeans mass of the molecular cloud, MJ ~ 
1000 M⊙

•No fragmentation into low-mass objects

• Pointed toward very massive stars → 30–300 M⊙
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• (Yoshida et al. 2007) 
Pushes a simulation 
to Pop III protostar 
formation!

•More simulations 
(e.g. O’Shea+ 2007) 
gave more samples 
for an IMF, but always 
showed a bias toward 
high masses and no 
fragmentation.
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FRAGMENTATION!

• Improved chemistry models and sink particle implementations 
allows simulations to progress further than the first collapsing 
object.

• (Turk+ 2009) Found 1 of 5 realizations fragmented.  50 M⊙ 
clump fragments into two, separated by 800 AU.
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FRAGMENTATION!
• Improved chemistry models and sink particle implementations 

allows simulations to progress further than the first collapsing 
object.

• (Turk+ 2009) Found 1 of 5 realizations fragmented.  50 M⊙ 
clump fragments into two, separated by 800 AU.

• (Stacy+ 2009) Disk instabilities cause fragmentation, forming 
a 40 M⊙ and 10 M⊙ binary.
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FRAGMENTATION!
• (Clark+ 2011) Disk fragmentation to form tight (sometimes 

< AU) multiple systems

• (Greif+ 2011, 2012) Finds fragmentation in five halos, 
evolving the systems for ~100 dynamical times.  Flat 
protostellar mass function from 0.1–10 M⊙.
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POP III FINAL MASSES
• When do Pop III stars stop 

accreting?

• (Stacy+ 2011, Hosokawa+ 
2011) Modeled protostellar 
radiative feedback from an 
accreting Pop III star.  

• Stacy+: Found that the 
star grows to ~30 M⊙ in a 
binary system.

• Hosokawa+: Found that 
the star is limited to ~43 
M⊙
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RADIATION TRANSPORT BY 
RAY TRACING
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Cosmological Radiative Transfer Equation
n := normal vector
a := scale factor
ā := a/aem
H := Hubble factor
ν := frequency

I⌫ ⌘ I(⌫,x,⌦, t)
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Simplifications – “Local” Approximation

Propagation &

Cosmic Expansion

Redshifting

Cosmological Dilution
Absorption
Emission

1. Short timesteps (ā = 1)
2. Ignore cosmological redshift and dilution (may 

become important >50 Mpc)
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RT Equation along a Ray

• Consider point sources of radiation

• Initially, the radiation flux is split equally among all rays.
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• P := photon flux in the ray
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Adaptive Ray Tracing
Abel & Wandelt (2002)

Monday, 29 October 12



Adaptive Ray Tracing
Abel & Wandelt (2002)

Monday, 29 October 12



Adaptive Ray Tracing Abel & Wandelt (2002)
Wise & Abel (2011)

• Ray directions and splitting based 
on HEALPix (Gorski et al. 2005)

• Rays are split into 4 child rays 
when the solid angle is large 
compared to the cell face area

• Well-suited for AMR

• Can calculate the photo-ionization 
rates so that the method is photon 
conserving.
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OVERCOMING O(NSTAR) :: RAY / SOURCE MERGING

• Sources are grouped on a binary 
tree.

• On each leaf, a “super-source” is 
created that has the center of 
luminosity.

• After the ray travel ~3-5 times the 
source separation, the rays 
merge.

• Recursive.

Okamoto et al. (2011)
Wise & Abel (in prep)
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POP III RADIATIVE FEEDBACK

Monday, 29 October 12



POP III RADIATIVE FEEDBACK

• (Kitayama+ 04; Whalen+ 04) First 1-D radiation 
hydrodynamics calculations.

• Starting with the final radially averaged profiles from 
cosmological halos.

• They find that most gas is expelled from the halo, driven out 
by a 30 km/s shock wave that is created by the ionization 
front.
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POP III RADIATIVE FEEDBACK
• (Shapiro+ 2004) 2-D calculations of photo-evaporation of 

nearby halos

• (Alvarez+ 2006, Abel+ 2007) First 3-D radiative transfer 
calculations.

• Using cosmological initial conditions, found that the star 
leaves a warm (104 K) and diffuse (0.1 cm-3) medium 
behind.

• Creates shadows and butterfly shaped HII regions.
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H II REGION OF A PRIMORDIAL STAR
Density Temperature

•106 M⊙ DM halo; z = 17; single 100 M⊙ star (no SN)
•Drives a 30 km/s shock wave, expelling most of the gas

Abel, Wise, & Bryan (2007)

1.2 kpc
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CONTRIBUTION TO 
REIONIZATION?

• By 2007-2008, several Pop III stars were being simulated in 
cosmological simulations that had radiative transfer (Johnson+ 
2007; Wise & Abel 2008)
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150 comoving kpc
~30 Pop III stars simulated

z = 30 → 16
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No Star Formation, H/He Cooling Only
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9 

ph
ys

ic
al

 k
pc

; z
 =

 1
7

Wise & Abel (2008)

Monday, 29 October 12



CONTRIBUTION TO 
REIONIZATION?

• By 2007-2008, several Pop III stars were being simulated in 
cosmological simulations that had radiative transfer (Johnson+ 
2007; Wise & Abel 2008)

• Showed that ~25% of biased regions can be ionized before 
a galaxy forms.

• Increases the minimum mass of a star-forming halo by pre-
heating the IGM.

• 1 in 10 ionizing photons results in a sustained ionization

• Photo-evaporates neighboring minihalos.
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POP III SUPERNOVAE
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POP III CHEMICAL FEEDBACK

•Metal-free stars can end its life in a unique type of supernova, 
a pair-instability SN, between 140–260 M⊙.

•Nearly all of the helium core is converted into metals (~80 
M⊙!)

• Chemical abundance patterns are much different than Type II 
SNe (C, Ca, Mg production independent of mass)

Barkat (1967); Bond+ (1984); Fryer+ (2001); 
Heger & Woosley (2002); Heger+ (2003)
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Heger et al. (2003)

SNe
SNe

BHs
BHs

Monday, 29 October 12



CHEMICAL ENRICHMENT
• (Bromm+ 2003) PISN in a cosmological setting.  Removes 

90% of the gas (even without radiative feedback!), pre-
enriches the IGM to ≥10-4 Z⊙

• (Wise+ 2008; Greif+ 2010) Nearly uniform enrichment to 
10-3 Z⊙ from Pop III supernovae in dwarf galaxies.

•Metal mixing in galaxies are driven by virial turbulence (Wise
+ 2007; Greif+ 2008).

• About 60% of metals fallback into the galaxy.
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• 40% of metals reside in the IGM
• ZIGM = 10–3.0 Z⊙

• IGM is preferentially enriched
• Turbulence mixes the heavy elements with 

pristine gas.
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HIGH-Z DWARF GALAXIES
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TRANSITION TO GALAXIES
• Small-scale (1 comoving Mpc3) AMR radiation hydro simulation 

with Pop II+III star formation and feedback (1000 cm-3 threshold)

• Coupled radiative transfer (ray tracing: optically thin and thick 
regimes)

• 1800 M⊙ mass resolution, 0.1 pc maximal spatial resolution

• Self-consistent Population III to II transition at 10-4 Z⊙

• Assume a Kroupa-like IMF for Pop III stars with mass-dependent 
luminosities, lifetimes, and endpoints.

Wise, Turk, Norman, & Abel (2012)

f(logM) = M�1.3
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"
�
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MASS-TO-LIGHT RATIOS

Scatter at low-mass caused by environment and different Pop III endpoints

M < 108 M⊙ halos
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• Isolated halo (8e7 
M⊙) at z=7

•Quiet recent merger 
history

•Disky, not irregular

•Steady increase in 
[Z/H] then plateau

•No stars with [Z/H] 
< -3 from Pop III 
metal enrichment
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•Most massive halo 
(109 M⊙) at z=7

•Undergoing a major 
merger

•Bi-modal metallicity 
distribution function

•2% of stars with   
[Z/H] < -3

• Induced SF makes 
less metal-poor stars 
formed near SN 
blastwaves
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Z-L RELATION IN 
LOCAL DWARF 

GALAXIES

• Average metallicity in a 
106 L⊙ galaxy is [Fe/H] 
~ –2

• Useful constraint of 
high-redshift galaxies, if 
we assume that this 
metal-poor population 
was formed during 
reionization.

Kirby+ (2011)
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VARYING THE SUBGRID MODELS

Mchar = 40 M⊙ No H2 cooling (i.e. minihalos)

Zcrit = 10-5 and 10-6 Z⊙ No Pop III SF

Redshift dependent 
Lyman-Werner background (LWB)

Supersonic streaming velocities

LWB + Metal cooling
LWB + Metal cooling + 

enhanced metal ejecta (y=0.025)

LWB + Metal cooling + radiation pressureLWB + Metal cooling + radiation pressure
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STAR FORMATION RATES

Pop II

Pop III
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EFFECTS OF RADIATION PRESSURE
MVIR = 3 X 108 M⊙ GALAXY AT z = 8
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EFFECTS OF RADIATION PRESSURE
 AVG. METALLICITIES IN DENSITY-TEMPERATURE SPACE
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H2 cooling to T ~ 1000 K.  
Local UV radiation field 

prevents cooling to 300 K.

Metal-rich ejecta “trapped” in cold, dense 
gas.  Little mixing.

Radiation pressure aids 
in dispersing metals to 

the ISM.

JHW+ (arXiv:1206.1043)
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BASELINE AT z = 8

Main Limitation:

lacking

Metal cooling
Soft UV background

JHW+ (arXiv:1206.1043)
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+ METAL COOLING & SOFT UVB
(Re-)introducing typical 

overcooling
problem during

initial star formation at
M ~ 108 M⊙

Causes over-enrichment – 
nearly solar metallicities.  

Doesn’t match with 
z = 0 dwarfs, but this 

could be incorporated 
into a bulge

Katz+ (1996) plus many more...

JHW+ (arXiv:1206.1043)

Monday, 29 October 12



SOFT UVB + METAL COOLING + RAD. PRESSURE

Momentum transfer
from ionizing radiation

No treatment of radiation 
pressure on dust → lower 

limit on its effects

SF decreases because 
dense gas is further 

dispersed.

Enhanced metal mixing, 
resulting in an average 
metallicity of 10-2 Z⊙

Haehnelt (1995) 
Murray, Quataert, & Thompson + TQM (2005)

JHW+ (arXiv:1206.1043)
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EFFECTS OF RADIATION PRESSURE
METALLICITY DISTRIBUTION FUNCTIONS

Feedback from 
radiation pressure 
more effectively 

disperses metal-rich 
ejecta and produces a 
galaxy on the mass-
metallicity relation

JHW+ (arXiv:1206.1043)
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EFFECTS OF RADIATION PRESSURE
RADIAL VELOCITIES (OVERCOOLING → DECREASED SF)

•Reverses infall, increases 
turbulent motions, and 
decreases SF in the inner 
100 pc.

• In rad. pressure simulations,

compared to 25% without it.

vrms ⇠ Vc

JHW+ (arXiv:1206.1043)
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• Over the past decade, numerical work have begun to refine the formation 
scenario for the first stars.

• Stellar masses ~ tens of solar masses

• Binaries possible (X-ray pre-ionization?)

• Pop III radiative feedback creates gas-poor halos and delays star formation for 
10–50 Myr.

• Pop III supernova feedback enriches the first galaxies to a nearly uniform 10-3 
Z⊙ but is the demise of Pop III stars.

• The gas depletion, IGM pre-heating, and chemical enrichment all have impacts 
on the properties of the first galaxies.

• Radiation pressure plays an important role in regulating star formation in the 
first galaxies through driving turbulence and allowing SN feedback drive 
outflows more efficiently.

SUMMARY
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