MAKING GALAXIES IN A COSMOLOGICAL CONTEXT (MAGICC)

Greg Stinson MPIA Chris Brook (Madrid)

The goal

Create a sample of simulated galaxies

an an taon an t Taon an t

- Smoothed Particle Hydrodynamics (SPH)
- New low temperature and metal cooling (Shen 2010)
- + UV heating (Haardt + Madau 1996)
- Metal Diffusion (Wadsley et al 2008)
- Star Formation (GS et al 2006)
- Stellar Feedback

COOL, DENSE GAS FORMS STARS T_{max} = 15000 K; n_{min} = 10 cm-3 (resolved density) Follow Schmidt Law: dM*/dt = c* M_{gas}/t_{dyn}

COOL, DENSE GAS FORMS STARS T_{max} = 15000 K; n_{min} = 10 cm-3 (resolved density) Follow Schmidt Law: dM*/dt = c* M_{gas}/t_{dyn}

STELLAR FEEDBACK

- Ideally, stellar feedback should do 3 things
 - Limit star formation
 - Provide pressure support for the disk
 - drive outflows

Eta Carinae Starforming Region NASA / JPL-Caltech / N. Smith (Univ. of Colorado at Boulder)

Spitzer Space Telescope • IRAC Visible: NOAO/AURA/NSF \$\$\$c2005-12a

STELLAR FEEDBACK

Infra

NASA

- Ideally, stellar feedback should do 3 things
 - Limit star formation
 - Provide pressure support for the disk
 - drive outflows

One of our particles I0⁵ M_o I00 pc

STELLAR FEEDBACK

Infra

NASA

• Problems

- Dense gas cools fast $(t_{cool} < t_{dyn})$
- Small amounts of gas have a large impact
- How do you drive observed outflows?

One of our particles

Too many stars formed

primarily in the center

OVERCOOLING Stinson et al (2010)

FROM MUGS TO MAGICC*

Increase SN feedback

* Making Galaxies in a Cosmological Context

FROM MUGS TO MAGICC*

Increase SN feedback

* Making Galaxies in a Cosmological Context

FROM MUGS TO MAGICC*

Increase SN feedback

* Making Galaxies in a Cosmological Context

MASS EVOLUTION (SN ONLY) Star formation follows mass accretion

A hole

A solution

EARLY STELLAR FEEDBACK A solution

MASS EVOLUTION (SN ONLY) Star formation follows mass accretion

WHAT KIND OF GALAXIES ARE PRODUCED?

50 kpc

Movies at <u>www.mpia.de</u>/ ~stinson/magicc

THE MAGICC GALAXY Match M_{*}-M_{halo} and see what happens Stinson+ (2012b)

Brook et al (2012a)

WHAT HAPPENS TO LOW JZ GAS?

2 kpc

Trace any particles that come within 2 kpc of center between 5.5 < z < 1.75 to where they are at z=0

LOW ANGULAR MOMENTUM STAR FORMATION Gas that entered bulge between 5.5 < z < 1.75

ANGULAR MOMENTUM REDISTRIBUTION

Brook et al (2011)

SIMULATED BARYON CYCLE

MUGS only SN SN+ESF

Thick Disk Formation

• Stinson+ (in prep)

0.7 Gyr

Strong SN only

31

0.7 Gyr

Low SN FB: MUGS

0.7 Gyr

Strong SN only

Early Stellar Feedback is necessary to fit $M \star - M_{halo}$ evolution

Low SN FB: MUGS

0.7 Gyr

Strong SN only

Galaxy has flat rotation curve, exponential surface brightness profile

0.7 Gyr

Low SN FB: MUGS

0.7 Gyr

Strong SN only

Outflows remove angular momentum material and create massive enriched hot halos

Low SN FB: MUGS

0.7 Gyr

Strong SN only

Thick and thin disk similar to MW that form based on gas dynamics

0.7 Gyr

Low SN FB: MUGS

0.7 Gyr

Strong SN only

31

0.7 Gyr

Low SN FB: MUGS