Landau resonance and the core-cusp problem in cold dark matter halos

<u>Go Ogiya</u>

Masao Mori (University of Tsukuba, Japan)

Structure Formation in the Universe

- Dark Matter (DM)
 - is the dominant element in mass
 - interacts only through gravity with others
 - assembles baryon (atoms) and DM

- drives structure formation (DM halos, Galaxies etc.)

- Cold Dark Matter (CDM) cosmology
 - is the standard paradigm
 - matches observations in large scale
 - has serious problems in small scale

Core-Cusp problem

Ishiyama et al. (2011)

What is the Core-Cusp Problem?

Mass-density profile of DM halo

Realistic Simulation

- Mashchenko et al. (2008)
 - Cosmoligical N-body+SPH simulation
 - Supernova feedback etc.
 - Blue: gas, Yellow: star
 - Gas
 - Blown out (expansion)
 - Fall back towards center (contraction)
 - Repeat many times
 - Gas Oscillation

Idealized Model

1) Gas heating by supernovae

2) Gas expansion

- 3) Energy loss by radiative cooling
- 4) Contraction towards the center
- 5) Ignition of star formation again

Repetition of these processes Gas Oscillation

Change of potential \Rightarrow DM halo is affected gravitationally \Rightarrow Cusp to Core transition?

Resonance Model

- Linear analysis of the resonance between the density wave and the particles: assumption and approximation
 - − Perturb equilibrium system (0) by external force (ex) \Rightarrow induced values (ind)
 - Focus on the particle group with $\rho_0 = const.$, $v_0 = const.$
 - External force is oscillatory $-\frac{\partial \check{\Phi}_{ex}}{\partial r} = \sum_{n} A_n \cos(kr n\Omega t)$

(A: strength, k: wavenumber, Ω: frequency)

- Linearized Euler eq. $\frac{\partial v_{ind}(t,r)}{\partial t} + v_0 \frac{\partial v_{ind}(t,r)}{\partial r} = -\frac{\partial \Phi_{ex}(t,r)}{\partial r}$ • Linearized eq. of continuity $\frac{\partial \rho_{ind}(t,r)}{\partial t} + v_0 \frac{\partial \rho_{ind}(t,r)}{\partial r} = -\rho_0 \frac{\partial v_{ind}(t,r)}{\partial r}$ • Linearized eq. of continuity $\frac{\partial \rho_{ind}(t,r)}{\partial t} + v_0 \frac{\partial \rho_{ind}(t,r)}{\partial r} = -\rho_0 \frac{\partial v_{ind}(t,r)}{\partial r}$ • Linearized eq. of continuity $\frac{\partial \rho_{ind}(t,r)}{\partial t} + v_0 \frac{\partial \rho_{ind}(t,r)}{\partial r} = -\rho_0 \frac{\partial v_{ind}(t,r)}{\partial r}$ • Linearized eq. of continuity $\frac{\partial \rho_{ind}(t,r)}{\partial t} + v_0 \frac{\partial \rho_{ind}(t,r)}{\partial r} = -\rho_0 \frac{\partial v_{ind}(t,r)}{\partial r}$ • Linearized eq. of continuity $\frac{\partial \rho_{ind}(t,r)}{\partial t} + v_0 \frac{\partial \rho_{ind}(t,r)}{\partial r} = -\rho_0 \frac{\partial v_{ind}(t,r)}{\partial r}$ • Linearized eq. of continuity $\frac{\partial \rho_{ind}(t,r)}{\partial t} + v_0 \frac{\partial \rho_{ind}(t,r)}{\partial r} = -\rho_0 \frac{\partial v_{ind}(t,r)}{\partial r}$ • Linearized eq. of continuity $\frac{\partial \rho_{ind}(t,r)}{\partial t} + v_0 \frac{\partial \rho_{ind}(t,r)}{\partial r} = -\rho_0 \frac{\partial v_{ind}(t,r)}{\partial r}$ • Linearized eq. of continuity $\frac{\partial \rho_{ind}(t,r)}{\partial t} + v_0 \frac{\partial \rho_{ind}(t,r)}{\partial r} = -\rho_0 \frac{\partial v_{ind}(t,r)}{\partial r}$ • Linearized eq. of continuity $\frac{\partial \rho_{ind}(t,r)}{\partial t} + v_0 \frac{\partial \rho_{ind}(t,r)}{\partial r} = -\rho_0 \frac{\partial v_{ind}(t,r)}{\partial r}$ • Linearized eq. of continuity $\frac{\partial \rho_{ind}(t,r)}{\partial t} + v_0 \frac{\partial \rho_{ind}(t,r)}{\partial r} = -\rho_0 \frac{\partial v_{ind}(t,r)}{\partial r}$ • Linearized eq. of continuity $\frac{\partial \rho_{ind}(t,r)}{\partial r} + v_0 \frac{\partial \rho_{ind}(t,r)}{\partial r} = -\rho_0 \frac{\partial v_{ind}(t,r)}{\partial r}$ • Linearized eq. of continuity • Linearized eq. of contin
- When $n\Omega\sim kv_0$, coefficients diverge Resonance

Resonance Condition

- Resonance between particles and density waves
- $n\Omega\sim kv_0$ • Some arithmetic calculations (n = 1)

$$t_{\rm d}(r) \sim T$$

$$t_{\rm d}(r) = \sqrt{\frac{3\pi}{32G\bar{\rho}(r)}}$$

Resonance occurs when the condition is satisfied

- \rightarrow efficient energy transfer
- \rightarrow system expands
- → density change dramatically

⇒ Cusp to Core transition

$\underbrace{Our \ model}_{T} \Leftrightarrow \underbrace{Observations}_{Star \ formation \ histories \ of \ galaxies}_{t_d}(r): \ Local \ dynamical \ time \ \Leftrightarrow \ Density \ of \ DM \ halos$

Core Scale

 $\rho(r) = \frac{\rho_0 R_{DM}^3}{r^{\alpha} (r + R_{DM})^{3-\alpha}}$ Density profile of CDM halo $M(\alpha; x) = \frac{4\pi\rho_0 R_{\rm DM}^3}{3-\alpha} x^{3-\alpha} {}_2F_1[3-\alpha, 3-\alpha, 4-\alpha; -x]$ Mass profile ↑ Gauss's hyper-geometric function $x \equiv r/R_{\rm DM}$ **Resonant condition** Dynamical time $t_{\rm d}(r) \sim T$ $t_{\rm d}(r) = \sqrt{\frac{3\pi}{32G\bar{\rho}(r)}}$ • Virial mass $M_{\rm vir}$ • Concentration c •Oscillation period T $r_{\rm core} = R_{\rm DM} (T/T_{\rm c})^{2/\alpha}$ \mathbf{V} We can predict the core scale created $T_{\rm c}^2 \equiv \frac{\pi^2}{8C} \frac{R_{\rm DM}^3 c^{3-\alpha} {}_2 F_1[\alpha; -c]}{M}$ by resonance!!

DM halo (*N*-body system): NFW model (Navarro *et al.* 1997)

Baryon (external potential): Hernquist potential (Hernquist 1990)

Property of DM halo

Number of particles N	16M, 128M
Softening parameter ϵ	0.004kpc
Virial mass of a DM halo $M_{ m vir}$	$10^9 M_{\odot}$
Virial radius of a DM halo $R_{ m vir}$	10kpc
Scale radius of a DM halo $R_{\rm DM}$	2kpc
Total baryon mass $M_{ m b,tot}$	$1.7 \times 10^8 M_{\odot}$

Numerical Model (y system): (ro et al. 1997) $ho(r) = rac{ ho_0 R_{ m DM}^3}{r(r+R_{ m DM}^2)}$

$$\Phi_b(r,t) = -\frac{GM_b}{r+R_b(t)}$$
$$R_b(t) \propto \cos\left(2\pi t/T\right)$$

Oscillation period of the external force, **T**

 $T = 1, 3, 10 t_{\rm d}(0.2 \rm kpc)$

Results1 - Density Profile-

The cusp-core transition and the resultant core scale depends on the oscillation period of the external potential, *T*.

Result2 - Fourier Spectrum of Velocity-

Summary

- Study the dynamical response of a DM halo
 - The Core-Cusp problem
 - Oscillatory change of gravitational potential
- Analytical Model
 - Resonance between particles and density waves
 - Resonant condition $t_{\rm d}(r) \sim T$ dynamical time oscillation period
- *N*-body simulations
 - Resonance plays a significant role to flatten central cusp
 - Resonance → Efficient energy transfer
 - \rightarrow Cusp to Core transition
 - Core scale is well matched to our predictions