Size evolution of early-type galaxies through dry mergers

East Asia Numerical Astrophysics Meeting Oct 29th – Nov 2nd, 2012 Kyoto, Japan

> Taira OOGI and Asao HABE Hokkaido University

Outline

- I. Introduction
 - Size evolution of early-type galaxies
 - Previous studies and motivation
- 2. N-body simulations
 - Galaxy model
 - Dry merger model
 - Simulation, resolution and test run
- 3. Results
 - Density profiles
 - Surface density profile and Sersic index
 - Stellar mass-size evolution, stellar mass-velocity dispersion relation
- 4. Summary and future works

- High-z Early-Type Galaxies (hereafter ETGs)
 - already massive (~10¹¹Msun)
 - old stellar population
 - Quiescent in star formation activity (gas-poor?)
 - Compact
- Compact massive ETGs are very rare in the local Universe (Taylor+ 2010)

Previous studies and Motivation

 R_{e}

- Dry minor merger scenario
 - No star formation, keeping the old stellar population
 - High frequency
- Previous studies & Issues
 - Naab+ 2009, Oser+ 2012
 - Simple analytical prediction
 - Consistent with the cosmological simulation
 - Softening length : the order of 100pc
- Motivation
 - N-body simulations of sequential dry minor mergers at higher force resolution (with sufficiently small softening length)

Observations of the dry merger van Dokkum 2005

$$\propto M_*^{\alpha}, \quad \alpha = \frac{d \ln R_e}{d \ln M_*} \cong 2$$

Dry merger models

Sequential dry minor mergers

- minor mergers with mass ratio of →[§]
 10:1 every 0.2 Gyr successively
- Two sequences with the compact satellites and the diffuse satellites
- runs are finished at ~3.6Gyr (corresponding to the time interval 0.7<z<2)

Comparison : dry major mergers→[®] mass ratio of 1:1

Effective radius: projected radius enclosing half of the stellar mass

Simulation code, resolution, and the test run

- N-body simulation
 - Code: GADGET-2 (Springel 2005)

• Resolution

name	N _{dm}	N _*	softening
primary	6.0×10 ⁵	6.0×10 ⁴	30рс
compact satellite	6.0×10 ⁴	6.0×10 ³	30рс
diffuse satellite	6.0×10 ⁴	6.0×10 ³	30рс

Animation : sequential dry minor mergers

- Only stellar particles are plotted
- The falling satellites are disrupted ← tidal stripping and shocking
- The surviving cores are merged with the primary galaxy after the several encounters ← dynamical friction

- difference between the three runs is in the density profile of the satellite stars
- in the case of the minor mergers of the compact satellites the size growth is the most effective.

- difference between the three runs is in the density profile of the satellite stars
- in the case of the minor mergers of the compact satellites the size growth is the most effective.

Surface density profiles and
Sersic indices $I(R) = I_0 \exp\left[-b(n)\left(\frac{R}{R_e}\right)^{1/n}\right]$

- In the case of the sequential minor mergers of compact satellites,
 - the size growth efficiency α reaches ~2.7 (Naab+ 2009: α ~2)
 - o decrease of the velocity dispersion is the most efficient ← heating and expansion by dynamical friction

Summary

- We perform high-resolution N-body simulation to investigate changes of sizes and velocity dispersions of early-type galaxies by dry minor mergers of two-component galaxies
- Efficient size growth occurs by sequential dry minor mergers of the compact satellites
 - mass deposit of satellite stars in the envelope of the primary galaxy
- Efficient decrease of velocity dispersion occurs by minor mergers of compact satellites
 - expansion of the primary stars by dynamical friction heating
- In future works, we will incorporate the compact stellar system in dark matter haloes obtained from cosmological simulations and perform cosmological dry merger simulations.