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Numerical Simulation of
Collisionless Self-Gravitating Systems

P N-body simulations

@ a “de facto standard” method to simulate the nonlinear evolution of self-
gravitating systems for more than 30 years.

@ the mass distribution is sampled by particles in the 6D phase-space volume
in @ Monte-Carlo manner

@ very large number of particles can be treated with the aid of sophisticated
Poisson solvers such as Tree and TreePM methods.

P Self-Consistent Field (SCF) method

@ particles are followed under the gravitational potential field obtained from
the expansion series of the particles' density field.

@ applied only to some specific cases, such as secular evolution of nearly
equilibrium systems or a collapse of spherical systems.



Potential Drawbacks
of N-body Simulations

@ intrinsic contamination of shot noise in physical quantities

shot noise term is only proportional to N~

o artificial two-body relaxation due to the super-particle approximation

==> introduces undesired collisional effect in a long-term evolution
@ velocity space is rather sparsely sampled.

===> physical processes sensitive to the velocity ‘A
structure such as the collisionless damping
and the two-stream instability are not
properly solved.
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Viasov-Poisson Simulations

VlIasov-Poisson
equations
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P an alternative way to solve the dynamics of collisionless self-gravitating

systems

P treats the matter as continuum fluid in the phase space instead of
sampling it by particles

==> free from shot noise contamination seen in the N-body approach

P so far limited to 1D or 2D simulations due to the huge amount of
required memory space and huge computational costs.

We present the first 3D Vlasov-Poisson simulation in

the 6D phase space volume.




Numerical Methods

P Both of physical and velocity spaces are discretized with 3D
regular mesh grids.

P Collisionless Boltzmann equation is solved using directional
splitting scheme, in which following six 1D advection equations
are sequentially integrated.
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P Physical requirements for the scheme of 1D advection equations

@ positivity

@ mass conservation === Positive Flux Conservation (PFC) scheme

@ maximum principle

Filbet, Sonnendrucker, Bertrand, J. Comp. Phys. (2001) 172, 166-187



Numerical Methods

P Poisson equation
@ Solved with the convolution method using the Fourier transform

@ Both for the periodic and isolated boundary condition

P Time integration
f(&7,0"1) = T, (At )2)T, (At /2)T; (At /2)
I (A1) T, (A1) T (Ar)
L, (Ar/2)T, (Ar/2)T, (At /2) f(X,V,1")



Test Suite

P Stability of a stable solution of Vlasov-Poisson equations

P Merging of two self-gravitating systems

+ comparison with N-body methods

P Gravitational instability and collisionless damping of density fluctuations

More numerical tests are presented in our preprint.



King Sphere

P Initial condition:

0
k(&) = (271‘0'(2))3/2 [exp(5/02) — 1] E>0
=0 E <O
?.)2
E=V—— U)o =3
P number of grids: |

64° for physical space
64° or 32° for momentum space

A stable solution of the Vlasov-Poisson egs.
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Basic test for our Vlasov-Poisson solver
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King Sphere
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P kinetic and grav. potential energies
are almost constant over one
dynamical timescale.

P time variation of the total energy
is not larger than 1%.

P> total mass is also well conserved
with sufficiently good accuracy.



King Sphere

P time evolution of the mass distribution

teD) “ N:, =64
1=0.4T | W the profiles are almost keep still.

1 P a slight mass transfer from center to

/ | : ] outskirtz, probably due to poor
; ] spatial resclution in the central

region.

i 1 P no significant difference between
=0 /"f Nipe=32 different velocity resolutions.
1=0.4T Y

1 10
radius



Merging of Two King Spheres
P initial condition

s offset merging of two King spheres

@ 64°mesh points for both the physical and
velocity spaces.

P N-body simulation for the comparison
@ each King sphere is represented with a million particles

@ simulated using the Particle — Mesh method with the same spatial
resolution as the Vlasov — Poisson simulation.



Merging of Two King Spheres

Vlasov — Poisson simulation N-body simulation
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Two King Spheres

I time evolution of the kinetic, grav.
potential and total energy in Vlasov —
Foisson and N-body simulations

P gocd agreement between Vlasov —
Foisson and N-body simulations.

[~ energy conservation is assured within

1% error at t<4.5T.



Velocity Distribution

P phase space density in the central region at a time of the closest approach.

Vlasov — Poisson simulation N-body simulation




Velocity Distribution

P phase space density in the outskirts at a time of the closest approach.

Vlasov — Poisson simulation N-body simulation




3D Gravitational Instability and
Collisionless Damping

Initial condition

F(@,5,t = 0) = 2L (—ﬂ)

(2102)3/2

p(x,t =0) = p(1 + 0(x))

» The density fluctuation §(x) is given so thatit @ number of mesh points
has a white noise power spectrum.
64° for the physical space

@ periodic boundary condition 64° or 32° for the velocity space

@ Jeans wave number

VarGp

o

ky =

ki > Ky w— collisionless damping
k<R i gravitational instability



Power Spectra
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» Growth and damping of the density fluctuations switch each other
clearly at the Jeans wave number.
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3-D Self-Gravitating System
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P Growth / damping rates of fluctuations

> Symbols : results for different velocity
resolutions

P> Lines: theoretical predictions of
growth and damping rates based on
the linear perturbation theory

I overshoot of the power spectra for
k/k_J=2 is due to the nonlinear effect.



Advantage and Disadvantage

P The resolution in the velocity space is significantly better than that of N-
body methods

Physical processes sensitive to the velocity distribution such as
collisionless damping and two-stream instability can be simulated
accurately.

>

P It is free from the shot noise contamination and artificial two—body effect.

—=—=> suitable to follow the long-term evolution of the self-gravitating systems

P Current spatial resolution of the Vlasov — Poisson simulation is rather poor
compared with the conventional N-body simulations, due to the required
large amount of memory.

===> needs for hierarchical or adaptive mesh structure

P In simulating the dynamical problem, we need to determine the boundary of
the simulation regions beforehand the simulations.



