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Numerical Simulation of 
Collisionless Self-Gravitating Systems

a “de facto standard” method to simulate the nonlinear evolution of self-
gravitating systems for more than 30 years.

the mass distribution is sampled by particles in the 6D phase-space volume 
in a Monte-Carlo manner

very large number of particles can be treated with the aid of sophisticated 
Poisson solvers such as Tree and TreePM methods.

N-body simulations

Self-Consistent Field (SCF) method

particles are followed under the gravitational potential field obtained from 
the expansion series of the particles' density field.

applied only to some specific cases, such as secular evolution of nearly 
equilibrium systems or a collapse of spherical systems.



  

Potential Drawbacks 
of N-body Simulations

intrinsic contamination of shot noise in physical quantities

artificial two-body relaxation due to the super-particle approximation

introduces undesired collisional effect in a long-term evolution 

velocity space is rather sparsely sampled.

v
x

shot noise term is only proportional to N－1/2  

physical processes sensitive to the velocity 
structure such as the collisionless damping 
and the two-stream instability are not 
properly solved.



  

Vlasov-Poisson Simulations

an alternative way to solve the dynamics of collisionless self-gravitating 
systems

treats the matter as continuum fluid in the phase space instead of 
sampling it by particles

so far limited to 1D or 2D simulations due to the huge amount of 
required memory space and huge computational costs. 

free from shot noise contamination seen in the N-body approach

We present the first 3D Vlasov-Poisson simulation in 
the 6D phase space volume.

Vlasov-Poisson
               equations



  

Numerical Methods

Both of physical and velocity spaces are discretized with 3D 
regular mesh grids.

Collisionless Boltzmann equation is solved using directional 
splitting scheme, in which following six 1D advection equations 
are sequentially integrated.  

Physical requirements for the scheme of 1D advection equations

positivity

mass conservation

maximum principle

Filbet, Sonnendrucker, Bertrand, J. Comp. Phys. (2001) 172, 166-187

Positive Flux Conservation (PFC) scheme



  

Numerical Methods

Poisson equation

Solved with the convolution method using the Fourier transform

Both for the periodic and isolated boundary condition

Time integration



  

Test Suite

Stability of a stable solution of Vlasov-Poisson equations

Merging of two self-gravitating systems

More numerical tests are presented in our preprint.

+ comparison with N-body methods

Gravitational instability and collisionless damping of density fluctuations



  

King Sphere
Initial condition：：：：

number of grids：：：：

643 for physical space

A stable solution of the Vlasov-Poisson eqs.

Basic test for our Vlasov-Poisson solver

643 or 323 for momentum space



King Sphere

kinetic and grav. potential energies 
are almost constant over one 
dynamical timescale.

time variation of the total energy 
is not larger than 1%.

total mass is also well conserved 
with sufficiently good accuracy.



King Sphere



  

Merging of Two King Spheres

initial condition

offset merging of two King spheres 

643 mesh points for both the physical and 
velocity spaces.

N-body simulation for the comparison

each King sphere is represented with a million particles

simulated using the Particle – Mesh method with the same spatial 
resolution as the Vlasov – Poisson simulation.



  

Merging of Two King Spheres

Vlasov – Poisson simulation N-body simulation





  

Velocity Distribution
phase space density in the central region at a time of the closest approach.

Vlasov – Poisson simulation N-body simulation



  

Velocity Distribution

phase space density in the outskirts at a time of the closest approach.

Vlasov – Poisson simulation N-body simulation



 

3D Gravitational Instability and 
Collisionless Damping

Initial condition

The density fluctuation δ(x) is given so that it 
has a white noise power spectrum.

periodic boundary condition

number of mesh points

643 for the physical space 

643 or 323 for the velocity space 

Jeans wave number



  

Growth and damping of the density fluctuations switch each other 
clearly at the Jeans wave number. 



  

3-D Self-Gravitating System

overshoot of the power spectra for 
k/k_J=2 is due to the nonlinear effect.

Growth / damping rates of fluctuations

Symbols : results for different velocity 
resolutions

Lines: theoretical predictions of 
growth and damping rates based on 
the linear perturbation theory



  

Advantage and Disadvantage

The resolution in the velocity space is significantly better than that of N-
body methods

Physical processes sensitive to the velocity distribution such as 
collisionless damping and two-stream instability can be simulated 
accurately.

It is free from the shot noise contamination and artificial two–body effect.  

Current spatial resolution of the Vlasov – Poisson simulation is rather poor 
compared with the conventional N-body simulations, due to the required 
large amount of memory. 

needs for hierarchical or adaptive mesh structure 

suitable to follow the long-term evolution of the self-gravitating systems

In simulating the dynamical problem, we need to determine the boundary of 
the simulation regions beforehand the simulations.


