Particle Acceleration at Astrophysical Shocks

Hyesung Kang, Pusan National UniversityDongsu Ryu, Chungnam National UniversityT. W. Jones, University of Minnesota

Outline

I. Introduction

- Diffusive Shock Acceleration (DSA)
- magnetic field amplification (MFA) and Alfvenic drift (AD)

II. DSA simulations including MFA & AD

- CR acceleration efficiency at cosmological shocks
- Nonthermal emission from Supernova Remnants (SNRs)

III. Shocks in Structure Formation Simulations

- Radio Relics (shocks) around galaxy clusters

IV. Summary

Nonrelativistic Shocks & Cosmic Rays (relativistic particles)

Particle Acceleration at Shocks: Fermi 1st order

Collision with approaching mirrors → gain energy

MHD waves = scattering centers = mirrors

Alfven waves in a converging flow act as converging mirrors

- → particles are scattered by waves and isotropized in local fluid frame
- → cross the shock many times $\frac{\Delta p}{p} \sim \frac{u_1 u_2}{v}$ at each shock crossing

DSA= Diffusive Shock Acceleration

Test-particle spectrum

$$P_n = (p_n / p_0)^{-3u_2 / (u_1 - u_2)}$$

$$f(p) \propto p^{-q} : \text{power-law}$$

$$q = \frac{3u_2}{u_1 - u_2} = \frac{3r}{r - 1}$$

$$r = \text{compression ratio}$$

$$\text{for } M >> 1, \text{ } r = 4, q = 4$$

$$N(E) \propto E^{-\gamma} \quad \gamma = q - 2 = 2$$

f(p): isotropic part of momentum distribution function

DSA kinetic simulation: M_s =5 shock thermal + power-law distribution

γ -ray emission from Tycho's SNRs \rightarrow steep proton spectrum

They are not understood well especially at weak non-relativistic shocks.

B field amplification via plasma instabilities

streaming CRs upstream of shocks

 \rightarrow excite resonant Alfven waves

 $\lambda_{w} \ll r_{g}(p)$

i x B

 \rightarrow amplify B field (Bell 1978, Lucek & Bell 2000)

Streaming CRs

 $\lambda_w \sim r_g(p)$ 0.4 resonant waves - 0.2 Figure 8. Magnetic field lines at t = 0 for the three-dimensional run. Figure 9. Magnetic field lines after 1.5 CR gyrations for the threedimensional run. ransferred to nonresonant waves **Cosmic-ray current** drives j x B

nonresonant instability by stretching field lines (Bell, 2004)

B field lines, t = 1.5

Bell's CR current driven instability Riquelme & Spitkovsky 2009 PIC (Particle in Cell) simulation y - z plane Z1.0 $J_{cr}\vec{x}, B_0\vec{x}$ 15 0.5 og(n_p/n_{p, mean} 0.0 χ -0.510⁴ magnetic energy 10^{3} 10 15 z/λ_{max} arrows = B fields 10² 10¹ saturation due to CR **Confirmation of Bell's CR** deflection current driven instability 10⁰ $\frac{B_{y(z)}}{\sim} \sim 30$ $\frac{B_x}{B_0} \sim 10$ 10^{-1} solid: transverse (perpendicular) 10^{-2} B_o dotted: longitudinal (parallel) 10^{-3} 5 (perpendicular) 10 15 20 25 (parallel) tγmax 9

30

II. DSA simulations including MFA & AD

Basic Equations for DSA Simulations in diffusion approximation

 $\frac{\partial \rho}{\partial t} + \frac{\partial (u\rho)}{\partial x} = 0$ (**1D** plane quasi-parallel shock) $\frac{\partial(\rho u)}{\partial t} + \frac{\partial}{\partial x}(\rho u^2 + P_g + \underline{P}_c) = 0$ ordinary gasdynamics EQs + P_c terms $\frac{\partial(\rho e_g)}{\partial t} + \frac{\partial}{\partial x}(\rho e_g u + P_g u) = -u\frac{\partial P_c}{\partial x} + W - L$ W = wave dissipation heating, L = thermal energy loss due to injection **Diffusion Convection Eq. with wave drift effect** $\frac{\partial f}{\partial t} + (u + u_w)\frac{\partial f}{\partial x} = \frac{1}{3}\frac{\partial}{\partial x}(u + u_w) \cdot p\frac{\partial f}{\partial p} + \frac{\partial}{\partial x}[\kappa(x, p)\frac{\partial f}{\partial r}] + Q(x, p)$

 $u_w \approx$ wave drift speed $\kappa(x, p) \approx \kappa^* p(\rho / \rho_0)^{-1}$: Bohm - like diffusion Q(x, p) = thermal leakage injection

Phenomenological models for MFA & Alfvenic Drift

(See Caprioli 2012, Lee, Ellison, Nagataki 2012)

- B field amplification via plasma instabilities :

$$\frac{B(x)^{2}}{B_{0}^{2}} = 1 + \frac{4}{25} M_{A,0}^{2} \frac{(1 - U(x)^{5/4})^{2}}{U(x)^{3/2}} \quad \text{in upstream} (x > x_{s}),$$

in TP regime: $U(x) = 1 \Rightarrow \text{no}$ MFA
$$\frac{B_{2}}{B_{1}} = \sqrt{\frac{1}{3} + \frac{2}{3} \left(\frac{\rho_{2}}{\rho_{1}}\right)^{2}} \quad (\text{isotropic fields}) \text{ in downstream} (x \le x_{s})$$

where $U(x) = [V_s - u(x)]/V_s$, $M_{A,0} = V_s/V_{A,0}$: Alfvenic Mach no., $V_{A,0} = B_0/\sqrt{4\pi\rho_0}$

- wave speed :

$$u_w \approx \frac{B(x)}{\sqrt{4\pi\rho(x)}}$$

in amplified fields
→ maximize the AD effect
→ reduce CR efficiency at strong shocks

- Free Escape Boundary: $f(p, x_{\text{FEB}}) = 0$ at $x_{\text{FEB}} = 0.5 \cdot x_s$

Diffusion-Convection Eq. for CR protons with Alfvenic drift

$$\frac{\partial f}{\partial t} + (u + u_w) \frac{\partial f}{\partial x} = \frac{1}{3} \frac{\partial (u + u_w)}{\partial x} p \frac{\partial f}{\partial p} + \frac{\partial}{\partial x} [\kappa(x, p) \frac{\partial f}{\partial x}] + Q(x, p)$$

a heuristic model our phenominological model:
 $u_w \approx V_A$ in upstream, $u_w \approx 0$ in downstream,
 $V_A = B(x)/\sqrt{4\pi\rho(x)}$ is Alfven speed.

Test-particle solution: injected population : $f_2(p) = f_{inj} (\frac{p}{p_{inj}})^{-q}$

thermal leakage injection at $p_{inj} \approx 6.6 \cdot m_p u_2 \approx 3.7 \cdot p_{th}$

Modified Power-law slope: steepening due to smaller velocity jump

$$q = \frac{3 \cdot (u_1 - V_A)}{(u_1 - V_A) - u_2} = \frac{3r \cdot (1 - M_A^{-1})}{r - 1 - r \cdot M_A^{-1}} \qquad M_A = \frac{u_s}{V_A}$$

where $r = \frac{\rho_2}{V_A}$: shock compression ratio

 ρ_1

Plane Parallel Shock with MFA & AD

M_s=6.7

CR acceleration efficiency with MFA & AD

(injection only) $P_{c,0} = 0$ $P_{c,0} = 0.05 P_{g,0}, s = 4.5$ 1 1 $\mathsf{P}_{\mathsf{g},\mathsf{2}}$ $\mathsf{P}_{\mathsf{g},\mathsf{2}}$ 0.1 0.1 $P_{c,2} / \rho_1 V_s^2 \Longrightarrow 0.2$ $P_{c,2} / \rho_1 V_s^2 \Longrightarrow 0.2$ 0.01 0.01 -o 100 10 10 Ms M 1 CR efficiency depends on M_{s} , $\mathrm{P}_{\mathsf{g},\mathsf{2}}$ not on T_0 0.1 c,2 Plane parallel cosmological without MFA & AD 0.01 shocks $P_{c,2} / \rho_1 V_s^2 \Longrightarrow 0.6$.001Kang + 2007 10100 1 Mo

Kang & Ryu

100

15

2012

Type Ia SNR Model: 1D spherical CRASH

$$M_{ej} = 1.4 \text{ M}_{\Theta}, \quad E_o = 10^{51} \text{ ergs}, \quad n_{\text{ISM}} = 0.3 \text{ cm}^{-3}, \quad T_0 = 3 \times 10^4 \text{ K}, \quad B_0 = 5 \mu \text{G}$$

 $r_o = 3.18 \text{pc}, \quad t_o = 255 \text{ yrs}$

Highest End of CR spectrum determines GeV-TeV γ -ray emission. So details of DSA modeling are important.

III. Shocks in Structure Formation Simulations

Weak shocks with M<3 are dominant inside ICM (T>10⁷K).

They are energetically important. (F_{KE} =0.5 ρ V_s³) At weak merger shocks DSA

CR injection/acceleration efficiency is low.

→ re-acceleration of pre-existing CRs can be important

Radio Relics of clusters: Diffuse Synchrotron Emission

Radio relics: observational properties

Cluster: MACSJ1752.0+4440 X-ray, Optical, Radio

Slide from Bonafede

Extended radio sources
Low radio brightness
Steep Spectrum a > 1

- Cluster peripheral regions

Polarized 20-30%

Host cluster: Minor or major merger

Radio relics: morphologies

ZwCl 0008.8+5215 (van Weeren et al. 2011)

Abell 115 (Govoni et al. 2001)

Abell 521 (Giacintucci et al. 2008)

Slide from Bonafede

Abell 1664 (Govoni et al. 2001)

Injection versus Re-acceleration at Radio Shocks ?

$$\alpha_{shock} \approx (q-3)/2$$
 or $(s-3)/2$

s = "pre-exisiting slope"

 $q = \frac{3r}{r-1} =$ "shock accelerated slope"

pre-existing: $f_0(p) = f_{pre} \left(\frac{p}{p_{inj}}\right)^{-s}$

"Sausage" Radio relic in CIZA J2242.8+5301

observed slope: $\alpha_{shock} \approx 0.6$, $\alpha_{integrated} \approx 1.08$ $\Rightarrow q \approx 4.2$, $M \approx 4.6$: injection or $\Rightarrow s \approx 4.2$, $M \sim 2-3$: re-acceleration

Double relics in ZwCl 0008.8+5215

observed : $1.1 \le \alpha_{shock} \le 1.2$, $1.5 \le \alpha_{integrated} \le 1.6$ \Rightarrow injection : $2.2 \le M \le 2.4$ or \Rightarrow re-acceleration : s = 5.4

DSA simulations for planar shocks: Electrons only

- Diffuse Shock Acceleration : "CRASH" code
- Test-particle regime (CR feedback off): M = 2-4.5

 $T_{ICM} \sim 10^8 \,\text{K}, \ c_s = 1500 \,\text{km/s}, M = 2 - 4.5, B_1 = 1 \mu G$

- Diffusion convection Eq. for CR electrons with cooling

$$\frac{\partial f_e}{\partial t} + u \frac{\partial f_e}{\partial x} = \frac{1}{3} \frac{\partial u}{\partial x} p \frac{\partial f_e}{\partial p} + \frac{1}{p^2} \frac{\partial}{\partial p} \left[p^2 b(p) f_e \right] + \frac{\partial}{\partial x} \left[\kappa(x, p) \frac{\partial f_e}{\partial x} \right] + Q(x, p)$$

 $f_e(x, p, t) =$ isotropic part of electron distribution function $b(p) = -dp/dt = DB_e^2 p^2 =$ synchrotron + IC cooling Q = injection from thermal pool

- Injection only vs. (Injection + Re-acceleration) models pre-existing CR electrons: $f_e(p) \propto (p / p_{inj})^{-s}$

$$p_{\rm inj} / m_p c \sim 1.5 \times 10^{-2}, \ \gamma_{\rm e,inj} \sim 30$$

 Table 1.
 Parameters for Plane-Parallel Shock Simulations

Model Name	z	$c_{s,1} \ ({\rm km~s^{-1}})$	М	$\begin{array}{c} u_2 \\ (\mathrm{km} \ \mathrm{s}^{-1}) \end{array}$	S	$\begin{array}{c} B_2\\ (\mu \mathrm{G}) \end{array}$	Cluster
M4.5B3.5I M2B7S4.2	$0.1921 \\ 0.1921$	$\begin{array}{c} 6.0\times10^2\\ 1.25\times10^3\end{array}$	$4.5 \\ 2.0$	$\begin{array}{c} 7.7\times10^2\\ 1.1\times10^3 \end{array}$	- 4.2	$3.5 \\ 7.0$	CIZA J2242.8+5301 CIZA J2242.8+5301
M2B2.3I M2B2.3S5.4	$0.103 \\ 0.103$	$\begin{array}{c} 1.25\times10^3\\ 1.25\times10^3\end{array}$	$2.0 \\ 2.0$	$\begin{array}{l} 1.1\times10^{3}\\ 1.1\times10^{3} \end{array}$	- 5.4	$2.3 \\ 2.3$	ZwCl0008.8+5215 ZwCl0008.8+5215

pre-existing:
$$f_0(p) = f_{pre} (\frac{p}{p_{inj}})^{-s}$$

Inject. vs. re-accel.

Gaussian Beam of $\theta_1 x \theta_2$

Simulation Result I: CIZA J2242.8+5301

II. M = 2, $B_2 = 7.0 \mu G$, $s = 4.2 \implies P_{CRe,1} / P_{g,1} \sim 10^{-4}$

Blue dots: data from van Weeren et al 2010 the flux is re-scaled to fit each model.

Both models can explain the observation. I. $M = 4.5, B_2 = 3.5 \mu G$, injection only $\Rightarrow \xi_e \sim 10^{-7}$

Kang, Ryu, Jones 2012₅

Simulation Result II: ZwCl 0008.8+5215

Blue dots: data from van Weeren et al 2011. the flux is re-scaled to fit each model.

 $\xi_e \sim 10^{-4}$: injection rate is too high ?? $P_{cr,e} / P_{gas} \sim 10^{-3}$: pre - existing CR due to turbulent acceleration ?

Kang, Ryu, Jones 20126

IV. Summary

- * Plasma simulations of nonrelativistic collisionless shocks
 - CR streaming and current instabilities -> amplify B fields
- * Magnetic field amplification and Alfvenic drift in upstream region may reduce the DSA efficiency at strong modified shocks.

so
$$P_{c,2} / \rho_1 V_s^2 \Rightarrow 0.2$$
 for $M > 10$ $(\beta_p = \frac{P_g}{P_B} \sim 100 \text{ in ICMs})$

- * Nonthermal radiation from Supernova Remnants (SNRs)
 - X-ray obs: amplified B fields ~ 100-300 μ G $N(E) \propto E^{-2.3}$ required
 - γ-ray obs: proton spectrums

Details of DSA modeling control the highest end of CR spectrum

* Radio shocks (relics) around merging clusters CR injection/acceleration are inefficient at weak shocks. Reacceleration of pre-exisiting CRs could be important.

We need to understand better wave-particle interactions at weak shocks.