The injection and evolution of cosmic ray hadrons in cosmological simulations

F.Vazza – Hamburg Obs. & Radio Inst.Bologna M.Bruggen (HS), G. Brunetti(IRA), C. Gheller (CSCS), A.Bonafede (HS)

Scientific case:

•<u>Observed</u> clusters show evidence of magnetic field, turbulence, <u>shocks</u> and <u>CR (electrons) acceleration</u>

 \rightarrow need for improvement in cosmological simulations and methods for shocks and cosmic rays physics shock:Akamatsu+12

GRID CODES:

- ES-TVD (Ryu+93)
- ENZO-PPM 1.5 (Bryan+95) SPH CODE:
 - GADGET3 (Springel05)
- •Shared initial conditions:100Mpc/h, σ_{g} =1.
- •Non-radiative physics, no reionization
- •Different shock detecting schemes
- •Resolutions:
- 64³-128³-256³-512³

A comparison of cosmological codes: properties of thermal gas and shock waves in large-scale structures

F. Vazza,^{1,2*} K. Dolag,^{3,4} D. Ryu,⁵ G. Brunetti,² C. Gheller,⁶ H. Kang⁷ and C. Pfrommer⁸

Gadget (Dolag)

Energy flux through shocks $\sim \delta(M)\rho(Mc)^3/2$

Energy flux through shocks $\Phi = \delta(M)\rho(Mc)^3/2$

Convergence with resolution

comparison between codes

Modelling injection and feedback of Cosmic Rays in grid-based cosmological simulations: effects on cluster outskirts.

F. Vazza^{1,2*}, M.Brüggen¹, C.Gheller³, G. Brunetti²

<u>Two-fluid model</u> Dorfi 1984; Bell 1987; Jones & Kang 1990; etc...

$$\frac{d\rho}{dt} + \rho \nabla \cdot \boldsymbol{u} = 0 ,$$

$$\frac{d\boldsymbol{u}}{dt} = -\frac{1}{\rho} \, \boldsymbol{\nabla} (\boldsymbol{P}_g + \boldsymbol{P}_c) \,,$$

$$\frac{de}{dt} = -\frac{1}{\rho} \nabla \cdot \left[\left(P_g + P_c \right) \boldsymbol{u} \right] + \frac{1}{\rho} P_c \nabla \cdot \boldsymbol{u} - \frac{S}{\rho},$$

In cosmology:

- •Miniati 2003 (fixed grid)
- •Pfrommer et al 2006 & Ensslin et al.2007 (SPH)

Ingredients:

- -Cosmic rays pressure
- Source term (e·g· shocks)
- Equation of state $P_c = (\gamma_c - 1)E_c$ with $\gamma_c = 4/3$
- Cosmic rays diffusion (>10kpc)

1-D tests for validation : SHOCK TUBE

Initial conditions:

LEFT: Pgas=10, Pcr=6, dens=9

RIGHT:Pgas=1,Pcr=0,dens=1

Acceleration efficiency η at shocks ~ 0.5%

1-D tests for validation: <u>from M=1.5 to M=5</u>

Injection of CR for increasing Mach

AMR-cosmological nested IC simulations

THERMAL GAS PRESSURE

Same IC as in Vazza+10 Max res= 25kpc Run at Juropa / SP6-Cineca 10-20 % longer CPU time - 10% more data

COSMIC RAYS PRESSURE

COSMIC RAYS PRESSURE

THERMAL GAS PRESSURE

250 kpc/h

Inside cluster cores: CR pressure ~0.5-5% Thermal Inside cluster volume: " ~10-20% "

LIMITS ON THE ENERGY BUDGET OF CR-PROTONS

y-ray emission from hadronic collsions in the ICM $CRp + p \rightarrow \pi^0 \rightarrow \gamma [1-100GeV] (\rightarrow EGRET, MAGIC, FERMI...)$

Profiles of CR to thermal pressure

Thermal and non-thermal traces of AGN feedback: results from cosmological AMR simulations

F. Vazza^{1,2,3*}, M. Brüggen^{1,2}, C. Gheller⁴

- ENZO + Our baseline model for CR from shocks + New features:
- cooling
- Shock-reacc.
- Coulomb & hadronic losses
 AGN feedback: jets (kinetic) quasar (therm.) bubbles(buoy.)

• $V_J \sim 700$ km/s at 50kpc/h • $E_J \sim 10^{59}$ erg/event

CR pressure

Gas pressure

cooling+jets

<u>Example: Jets - feedback:</u>

cooling

See also: Dubois+10,11 Gaspari+11,12

What is the CR output of each feedback mode?

Profile of CR pressure to thermal pressure in different modes

- pure cooling produces Pcr ~ nkT
- AGN feedback increases Pcr/nkT with respect to nonradiative

<u>What is the CR output of each feedback mode?</u> Hadronic collision \rightarrow y-flux (Pfrommer&EnsslinO4) the proton spectrum must be assumed: $\alpha \sim 2.5$ (M ~ 3)

 $L_{\gamma} \propto \rho_{IGM}^2 MT \langle \frac{\epsilon_{CR}}{M} \rangle$ ϵ_{th}

Some non-trivial match with observations : X-ray and Radio!

GMR 500 kpc 44.74 MACSJ1752.0+4440 44.72 Bonafede et al.2012 44.70 -Colors: XMM-Newton [0.5-2]keV. 6 -Contours: GMRTat 300MHz *M≈5 shocks* accel.efficiency Sample of Vazza et al.2010 of CR electr. Volume ~(400Mpc)³ **ξ~10**⁻⁵ (*Re/p=5* 10⁻³ Cluster of 6 10¹⁴ Msol a major merger X-ray at $z \sim 0.1$

From the simulations : kinetic energy in shocks and turbulence

SHOCK

(assumptions: $B=1\mu G$, no re-accel, $I(v) \sim v^{-1}$)

by matchig the observed emission \rightarrow EFFICIENCIES OFACCELERATION of CR-electrons by SHOCKS ($\xi \sim 10^{-5}$) and by TURBULENCE ($\xi \sim 0.05$)

<u>Conclusions</u>

1) NON-THERMAL EMISSION FROM CLUSTERS TO STUDY CR IN THE ICM

2) SHOCKS IN THE ICM ARE WEAK, ACCEL·EFFICIENCY DIFFICULT TO CONSTRAIN

3) <u>CR PROTONS</u>: PROBED THROUGH _Y-RAY, THEY TELL US ABOUT M<10 SHOCKS

4) <u>CR ELECTRONS</u>: PROBED BY RADIO RELICS, THEY TELL US ABOUT 2 < M < 5ACCELERATION ($\xi \sim 10^{-5}$)

<u>End, thanks!</u>