

Numerical Simulation of Core-Collapse Supernovae

Yudai SUWA (諏訪 雄大)

(YITP, Kyoto University)

Collaboration with

T. Takiwaki, K. Kotake (NAOJ)、M. Liebendörfer 、S.C. Whitehouse (U. Basel)、 T. Fischer (GSI)、K. Sato (NINS)

計算科学研究機構

Core-collapse supernovae

- * One of the most energetic explosion in the universe
 - $E_{exp} \sim 10^{51} \text{ erg}$
 - E_{grav} ~10⁵³ erg (~0.1 M \odot c²)
 - $E_{\nu} \sim 10^{53} \text{ erg}$
- Formation of neutron Star / Black hole
- * Formation of gamma-ray bursts?
- All known interactions are important

•Macrophysics	•Microphysics
▶Gravity	▶Weak
core collapse	neutrino physics
▶Elecromagnetic	▶Strong
pulsar, magnetar,	equation of state of dense matter
magnetorotational explosion	

East Asia Numerical Astrophysics Meeting 2012 @ YITP

Systematics in supernova simulations

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg

- * Dimensionality of hydrodynamics
- General relativity
- * Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate
 - Collective oscillation
- Nuclear equation of state
- * Initial condition
 - progenitor structure (mixing, wind...)
 - rotation / magnetic field

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12

Liebendörfer+01, Müller+ 12, Kuroda+ 12,

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Raffelt & Smirnov 07, Duan+ 10, Dasgupta+ 10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Nomoto & Hashimoto 88, Woosley & Weaver 95, Woosley+ 02, Limongi & Chieffi 06, Woosley & Heger 07, Yoshida+ 12

rotation / magnetic field

East Asia Numerical Astrophysics Meeting 2012 @ YITP

4/15

* Nuclear equation of state

Collective oscillation

- Interaction rate
- Scheme to solve Boltzmann equation

* General relativity

* Neutrino physics

Systematics in supernova simulations

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12

Liebendörfer+01, Müller+ 12, Kuroda+ 12,

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Raffelt & Smirnov 07, Duan+ 10, Dasgupta+10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Nomoto & Hashimoto 88, Woosley & Weaver 95, Woosley+ 02, Limongi & Chieffi 06, Woosley & Heger 07, Yoshida+ 12

Initial condition

progenitor structure (mixing, wind...)

Our Goal: Produce Successful Explosion! of ~1051 erg

1D simulations: fail to explode

By including all available physics to simulations, we concluded that the explosion cannot be obtained in 1D!

(The exception is an 8.8 M_☉ star; Kitaura+ 06)

2012/10/30

Numerical simulation

- * Axisymmetric simulation (ZEUS-2D; Stone & Norman 92)
- * Hydrodynamics + Neutrino transfer

$$\begin{aligned} \frac{df}{cdt} + \mu \frac{\partial f}{\partial r} + \left[\mu \left(\frac{d\ln\rho}{cdt} + \frac{3v}{cr} \right) \right] (1 - \mu^2) \frac{\partial f}{\partial \mu} + \left[\mu^2 \left(\frac{d\ln\rho}{cdt} + \frac{3v}{cr} \right) - \frac{v}{cr} \right] D \frac{\partial f}{\partial E} \\ = j(1 - f) - \chi f + \frac{E^2}{c(hc)^3} \left[(1 - f) \int Rf' d\mu' - f \int R(1 - f') d\mu' \right] \end{aligned}$$

(Lindquist 1966; Castor 1972; Mezzacappa & Bruenn 1993)

- Isotropic Diffusion Source Approximation (Liebendörfer+ 09)
- electron-type neutrino/antineutrino

Neutrino-driven explosion

Recently, we have successful exploding models driven by neutrino heating

YS, Kotake, Takiwaki, Whitehouse, Liebendörfer, Sato, PASJ, 62, L49 (2010)

East Asia Numerical Astrophysics Meeting 2012 @ YITP

2012/10/30

3D simulation with neutrino transfer

Takiwaki, Kotake, YS, ApJ, 749, 98 (2012)

$320(r)x64(\theta)x128(\phi)x20(E_{\nu})$

XT4@NAOJ

T2K-Tsukuba

K computer

2012/10/30

Systematics in supernova simulations

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg

- * Dimensionality of hydrodynamics
- * General relativity
- * Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate

Collective oscillation

- Nuclear equation of state
- Initial condition
 - progenitor structure (mixing, wind...)
 - rotation / magnetic field

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12

Liebendörfer+01, Müller+ 12, Kuroda+ 12,

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Duan+ 10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Nomoto & Hashimoto 88, Woosley & Weaver 95, Woosley+ 02, Limongi & Chieffi 06, Woosley & Heger 07, Yoshida+ 12

Problems of multi-D explosoins

* small explosion energy (~10⁴⁹-10⁵⁰ erg)

* continuous accretion <=> The remnant is NOT a NS

A possibility: the collective oscillation of neutrinos

- Because of the mass of neutrinos, the flavor oscillates in propagation
- * The spectrum can be different at the emission and absorption site.
- * Especially, $\nu \mu / \tau \rightarrow \nu_e$ is important
 - Reaction rate: $\sigma \propto E^2$
 - Average energy: $\nu \mu / \tau > \nu e$

Collective oscillation

YS, Kotake, Takiwaki, Liebendörfer, Sato, ApJ, 738, 165 (2011)

Radius [km]

Radius [km]

Systematics in supernova simulations

Our Goal: Produce Successful Explosion! of ~10⁵¹ erg

- * Dimensionality of hydrodynamics
- * General relativity
- Neutrino physics
 - Scheme to solve Boltzmann equation
 - Interaction rate
 - Collective oscillation

* Nuclear equation of state

Initial condition

- progenitor structure (mixing, wind...)
- rotation / magnetic field

Iwakami+ 08, Nordhaus+ 10, Hanke+ 11, Takiwaki+ 12

Liebendörfer+01, Müller+ 12, Kuroda+ 12,

Ott+ 08, Shibata+ 11, Sumiyoshi & Yamada 12

Langanke+ 03, Arcones+ 08, Lentz+ 12

Duan+ 10

Lattimer & Swesty 91, H. Shen+ 98, G. Shen+ 10, Furusawa+ 11, Hempel+ 12

Nomoto & Hashimoto 88, Woosley & Weaver 95, Woosley+ 02, Limongi & Chieffi 06, Woosley & Heger 07, Yoshida+ 12

Shock radius

YS, Takiwaki, Kotake, Fischer, Liebendörfer, Sato arXiv:1206.6101

2012/10/30

Summary

- * For supernova modeling, there are a lot of ingredients to pin down the explosion mechanism
- We performed multi-dimensional neutrino-radiation hydrodynamic simulations of core-collapse supernovae
- * The physical parts investigated are
 - Multi dimensionality
 - Effect of neutrino oscillation
 - Impacts of nuclear equation of state

* There are still a lot of tasks to do to unveil the explosion mechanism of core-collapse supernovae...