Radiation Magnetohydrodynamics of Black Hole Accretion Flows and Outflows

Ken OHSUGA (NAOJ, Japan) S. Mineshige, S. Takeuchi, T. Kawashima, H. Takahashi, M. Nomura

Three States of Accretion Flows and Outflows

Magnetic effects	YES	YES	YES
Radiative Cooling	NO	YES	YES
Radiation Force	NO	NO	YES

RADIATION-MHD SIM.
(WITHOUT ALPHA-VISCOSITY)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0$$

$$\frac{\partial (\rho v)}{\partial t} + \nabla \cdot \left(\rho v v - \left(\frac{BB}{4\pi}\right)\right) = -\nabla \left(p + \left|\frac{|B|^2}{8\pi}\right) + \frac{\chi}{c}F_0 - \rho \nabla \psi$$

$$\frac{\partial e}{\partial t} + \nabla \cdot (ev) = -p\nabla \cdot v + \frac{4\pi}{c^2}\eta J^2 - 4\pi\kappa B + c\kappa E_0$$

$$\frac{\partial E_0}{\partial t} + \nabla \cdot (E_0 v) = -\nabla \cdot F_0 - \nabla v : P_0 + 4\pi\kappa B - c\kappa E_0$$

$$\frac{\partial B}{\partial t} = \nabla \times \left(v \times B - \frac{4\pi}{c}\eta J\right) \qquad J = \frac{4\pi}{c}\nabla \times B$$
RHD terms MHD terms

NUMERICAL METHOD

- Cylindrical coordinate (r, φ, z); r=2-100Rs, z=0-100Rs
- We employ Flux-limited diffusion (FLD) for radiation fields.
- Axisymmetry & Mid-plane Symmetry

Initial Conditions & density parameter

SUPER-EDDINGTON (SLIM) DISK

ρ/ρ_0 , [ρ_0 =1.0 g cm⁻³]

Radiation energy & Magnetic field lines

 $L_{bol} \gtrsim L_{edd}, Mdot \sim 60 L_{edd}/c^2$

 $M_{BH} = 10 Msun$

Radiation-pressure supported disk + radiatively-driven jet Download; http://th.nao.ac.jp/MEMBER/ohsuga/Ken_Ohsugas_Home_Page/Research.html

STANDARD DISK

ρ/ρ_0 , [ρ_0 =10⁻⁴ g cm⁻³]

Radiation energy & Magnetic field lines

 $L_{bol} \sim 10^{-4} L_{edd}, Mdot \sim 10^{-3} L_{edd}/c^2$

Cold, thin disk + Magnetic pressure driven wind (not strong)

RIAF(ADAF)

ρ/ρ_0 , [ρ_0 =10⁻⁸ g cm⁻³]

Radiation energy & Magnetic field lines

 $L \sim 10^{-12} L_{edd}$, $Mdot \sim 10^{-5} L_{edd}/c^2$

Optically thin, hot disk & Magnetic jet

Mass Accretion Rate

Super-Eddington Flows

RADIATION-MHD JETS

OBSERVED LUMINOSITY

• The radiative flux is mildly collimated since the disk is optically and geometrically thick.

Thus, disk luminosity is estimated as
22Ledd for a face-on observer.

• Such apparent luminosity would increase with an increase of the mass accretion rate.

 $\frac{L_{bol} \gtrsim L_{edd}}{Mdot \sim 60 \ L_{edd}/c^2}$

SPECTRA OF SUPER-EDDINGTON FLOWS

Step I; RHD simulation Ohsuga et al. 2005, ApJ, 628, 368 Step2; Monte Carlo Radiation transfer (fee-free, thermal & bulk compton) *Kawashima, Ohsuga et al. 2012*

 10^{41}

 10^{40}

 10^{39}

0.3

1

 $\nu L_{\nu}[\mathrm{erg}\cdot\mathrm{s}^{-1}]$

SFD

10

energy[keV]

 $\dot{M} \approx 200 L_{\rm E}/c^2$

100

THERMAL COMPTON AND BULK COMPTON

<u>Spectra become harder by not only thermal comptonization</u> <u>but also bulk comptonization</u>.

COMPARISON WITH ULXS

SUPER-EDDINGTON ACCRETION ONTO NS

NEUTRON STARS VS BLACK HOLE

• Energy conversion efficiency $(L_{rad}/Mdot c^2, L_{kin}/Mdot c^2)$ is larger in NS case than in BH case.

• L_{rad} > L_{kin} for BH case, but L_{kin} > L_{rad} for NS case.

Clumpy Outflows

CLUMPY DISK WIND

UFOs in AGNs

Time variation of blueshifted (~0.1c) Fe absorption lines are observed in ~40% of AGNs, implying that powerful, clumpy, and high velocity outflows exist (Tombesi et al.

2010-12). Narrow Line Region Broad Line AGN Region Accretion Disk Obscuring Clumpy disk wind BΗ

<u>ULXs</u>

Clumpy disk wind is suggested to explain the time variation of the ULXs.

INSTABILITY OF RADIATIVELY-DRIVEN DISK WIND

accretion

Super-Eddington disk + Radiation Pressure driven, Magnetically collimated Jet

Time-dependent, Clumpy outflow with wide angle (20°~50°)

DISK, JET, & CLUMPY WIND

Schematic picture of disk-jet-clumpy wind

COMPARISON WITH OBS.

100

0

 $L \gtrsim L_{edd}$, $L \lesssim L_{edd}$

• Size of cloud ~ several Rs

- Column density of cloud ~ 10²⁴cm⁻²
- Ionization parameter log(xi)~2-4
- Number of cloud (line of sight)
 ≤ 1.0
- Typical time scale

~ several sec (MRH/10Msun)

Our clumpy winds might resolve the X-ray observations of UFOs and ULXs.

CLUMPY DISK WIND FORMS VIA SHAVIV INSTABILITY

Clumpy wind is generated via the Radiation Hydrodynamic instability (Shaviv 2001), by which matter in the radiation pressure-dominated region fragment into the clouds of $\tau \sim 1$.

WIND FROM SUB-EDDINGTON DISKS

• Our Radiation-MHD simulations shows the launching the magnetic pressure-driven outflows from the standard type disks.

• We need high-resolution simulations.

• Compton heating probably drives the thermal wind from the outer regions.

LINE DRIVEN WIND

Matter is accelerated by (UV) line absorption by metals
X-ray works to prevent the launching the wind since the metals are over-ionized.

→Line driving is efficient for the case of super-massive BHs.

Nomura, Ohsuga, et al. submitted to PASJ

Proga et al. 2000, 2004

Radiation Pressure Instability

RADIATION PRESSURE INSTABILITY OF DISK

Column density

Radiation pressure-dominated disk oscillates via thermal-viscous instability.

• Disk Luminosity goes up and down. 2L_{Edd} ↔ 0.3L_{Edd} (Yamaoka et al.)

- •Timescale ~ 40sec
- Jet intermittently appears

LIMIT-CYCLE (RADIATION-HD)

Ohsuga 2006, ApJ, 640, 923

Thermal viscous instability induces limit-cycle behavior.

LIMIT-CYCLE OSCILLATION

Our simulations nicely fit the observations of microquasar, GRS1915+105 (yamaoka et al. 2001, see alo Janiuk & Czerny 2005).

 Luminosity variation 2L_{edd} ↔ 0.2L_{edd}
 Timescale ~ 40 sec.
 Intermittent outflow.

CONC. & FUTURE WORK

• We succeeded in reproducing three distinct accretion modes (slim disk, standard disk, RIAF) and outflows by radiation-MHD simulations.

• Radiatively-driven, magnetically collimated jets and clumpy disk winds are launched from the super-Eddington disks.

Limit-cycle oscillations are reproduced by radiation-HD simulations. We should confirm by radiation-MHD simulations.
3D relativistic radiation-MHD simulations (without FLD app.) is left as important future work (POSTER by Takahashi et al.).