Galaxy Merger and Hungry Black Hole: Suppression of Black Hole Activity due to Galaxy Merger

Yohei MIKI

Masao MORI

- Toshihiro KAWAGUCHI
- (University of Tsukuba)

Contents

- Introduction
- Models
 - 1-D analytic model
 - 3-D simulations
- Summary

Black Hole Activity and Galactic Merger (1/2: theoretical hypothesis)

- SuperMassive Black Holes (SMBHs) become bright as Active Galactic Nuclei (AGN)
 - by releasing gravitational energy of accreting gas

need sufficient amount of accreting gas

- Does enough gas accrete to the central SMBH ?
 - angular momentum barrier prevents the accretion
 - galaxy collisions enhance angular momentum transfer
 - galaxy collisions ignite the AGN activity
 (Sanders et al. 1988; Hopkins & Quataert 2010 etc.)

Black Hole Activity and Galactic Merger (2/2: observational results)

- probability distribution of the difference of highly distorted galaxies (signature of merger) between the AGN and control sample
- no significant difference between AGN hosts and inactive galaxies
- galactic mergers also suppress AGN activity??

Our model (suppression mechanism)

- Do galaxy collisions suppress AGN activity ?
 - If mass fueling source of the BH is swept away, then the AGN activity must be turn off.
 - This process has never been considered.
 - We investigate the possibility of this scenario.

Do galaxy collisions suppress AGN activity?

- If it is possible, then what is the condition ?
- We assume AGN torus as fueling source to the SMBH.
 - we investigate influence on the AGN torus due to a galactic collision using one dimensional analytic model and three dimensional hydrodynamic simulations.
- Andromeda galaxy (M31) has a central SMBH (M_{BH} = 1.4 × 10⁸ M_☉: Bender et al. 2005), but its activity is very low (L_{0.3-0.7 keV} < 10⁻¹⁰ L_{Edd}; Li et al. 2009).
 Origin of the low activity is still an open question.

Merger remnants in the M31 halo

- Observed structures (stream, shells: Ibata et al. 2001; McConnachie et al. 2009) are the merger remnant of a tidallydisrupted dwarf galaxy about 1 Gyr ago (Fardal et al. 2007; Mori & Rich 2008; YM, Mori, Rich in prep.).
- Results of *N*-body simulations
 - The infalling satellite can blanket most of the central region of M31.
 - it passed 1kpc from center of M31.
 - its size is greater than 1kpc.
 - Time scale of the stripping < 2 Myr.
 - infalling satellite passed the region for 1.1 Myr.

McConnachie et al. 2009

East Shell

Andromeda Stellar Stream

Model of torus, infalling satellite

- Torus component (Krolik & Begelman 1988; Mor et al. 2009 etc.)
 - Steady, axisymmetric polytrope gas under a spherical gravitational potential (Okada et al. 1989 etc.)
 - maximum value of the aspect ratio is unity

$$R_0 = 9 \,\mathrm{pc}$$
 $R_{\mathrm{out}} = 50 \,\mathrm{pc}$
 $M_{\mathrm{torus}}/M_{\mathrm{BH}} = 1, \, 0.1, \, 10^{-2}, \, 10^{-3}$

- Gas component of the infalling dwarf galaxy (Mateo 1998; Conselice et al. 2003)
 - $f_{\text{gas}} = 1, \, 0.1, \, 10^{-2}, \, 10^{-3} \qquad u = 850 \, \text{km s}^{-1} \qquad T = 10^4 \, \text{K}$
- Important parameter

1-dim. Analytic Estimation

- estimation using only hydrodynamics
 - solving time evolution of torus gas along the shock direction after the collision with dwarf galaxy as a function of *R*
 - i.e. shocktube problems along the velocity vector of the infalling satellite
- condition for stripping

effect of momentum transfer

 $V_{\text{both}}(R) \ge \sqrt{2 \left[\Phi_{\text{M31}}(r_{\text{esc}}) - \Phi_{\text{M31}}(R, \, z = 0)\right]}, \quad V_{\text{both}} = \frac{\Sigma_{\text{t}} v_{\text{t, after}} + \Sigma_{\text{d}} v_{\text{d}}}{\Sigma_{\text{t}} + \Sigma_{\text{d}}}$

is the most important one compared to other physical processes (next slide)

Result of Analytic Estimation

Mass stripping rate vs. x Column density ratio profile

3-dim. Hydrodynamic Simulations

- Local simulations for the central part of the M31
 - uniform grid
 - HLLC, PLM(MUSCL)
 - gravity: external potential
 - addiabatic calculation
 - inflowing boundary condition (as gas of the infalling satellite)
 - T2K, FIRST (U. of Tsukuba)
- 12 runs (256³ grids) for parameter survey
- a run (1024³ grids) for convergence check
- a run (512³ grids) for twice bigger torus size (i.e., 8 times lower density torus model)

Case 1: torus gas is stripped (x=100)

• Escape fraction: $M_{\rm strip}/M_{\rm torus}$ is 0.922

Case 2: torus gas survives (x=10)

• Escape fraction: $M_{\rm strip}/M_{\rm torus} = 0.113$

 $-M_{\text{strip}}/M_{\text{torus}} = 0.117$ for the high resolution model (simulation of 1024³ grids)

Results of Parameter Study

Summary

- Question: Do galactic mergers suppress BH activity?
- We investigate whether or not torus-shaped gas surrounding an SMBH is stripped due to a galactic merger using 1-D analysis and 3-D simulations.
 - momentum transfer is the most effective process
 - column density ratio between gas of an infalling galaxy and torus-shaped gas is the most fundamental quantity
- Answer: Suppression of BH activity due to galactic collision occur when the gas column density of an infalling satellite exceeds that of AGN torus.