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Cyclic Properties of Dynamo Generated Field in the Sun

 Butterfly diagram
 : Time-evolution of latitudes of sunspots over several solar cycles. 

The butterfly diagram is a representative of cyclic properties  
in dynamo-generated magnetic fields in the Sun.
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Following the treatise of R89, this tensor can be repre-
sented by
〈
u′iT

′〉 = χi jδ j , (42)

where χi j is the eddy heat conductivity tensor and δ j =
−(∇ jT − g j/cP) the superadiabatic temperature gradient in the
direction j. In the present model geometry the horizontal tem-
perature gradients vanish due to the periodic boundaries, and
we must thus limit the discussion to the meridional compo-
nents of the tensor. In analogy to the Λ-coefficients, Eqs. (35)
and (36), we write χi j as

χrr = −χtVV(r, θ,Ω), (43)

χθr = −χtHV(r, θ,Ω), (44)

where χt is the turbulent heat conductivity for which we assume
that χt = νt.

The correlations between velocity and temperature fluctu-
ations derived from the calculations can now be used to deter-
mine the coefficients VV and HV with the equations

VV =

〈
u′zT

′
〉

V

βzχt
, (45)

HV =
〈
u′xT

′〉
V

βzχt
, (46)

where the sign changes for both quantities due to the transfor-
mation to spherical coordinates.

5. Results

5.1. Convective structures

To illustrate the general appearance of the structures aris-
ing in the present calculations we show a typical snapshot
of temperature fluctuations overplotted with the velocity vec-
tors from fully developed convection in a moderate rotation
case HICo1-30 in Fig. 3. As in many previous studies we find
a convection pattern dominated by broad warm upflows and
narrow cool downflow plumes. Near the top the upflows form
cells, separated from each other by a network of downflow
structures at the cell boundaries. The downflow structures re-
main coherent over large depths, sometimes even extending
over the whole convectively unstable layer. Generally, the hor-
izontal scale of the convective pattern is observed to decrease
as a function of depth. Note that the downflow lanes seen near
the top tend to form a few well-defined plumes at larger depths
and the regions of upward flow connect and become broader.
However, the upflows also tend to become less well-defined, so
that much more small-scale structure is seen as opposed to the
large and well-defined “granules” near the top. Although this
apparently contradicts the prediction of the mixing length the-
ory, on average the upflows occupy a larger area in the deeper
layers in accordance with the basic mixing length concept.

The effects of rotation can be studied from Fig. 4 where
we show horizontal contours of temperature from three differ-
ent calculation sets at four latitudes. In the weak rotation case
(set Co01), shown in the uppermost row, the convective cells
have more or less angular shapes, which pattern changes only
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Fig. 3. Snapshot of temperature fluctuations and velocity vectors from
the run HICo1-30. At the top surface of the box we show horizontal
contours at the z = z1 plane and at the lower surface at the z = z2 plane.
The coordinate system and the direction of the rotation vector are
shown in the upper right corner.

slightly as function of latitude. There is a weak tendency of the
sizes of the structures to get smaller towards the pole, which
effect becomes more pronounced as the rotation is increased
(the middle row, set Co1); the size of the structures clearly de-
creases as function of increasing latitude. The angular appear-
ance of the cells also changes due to the strong vortical down-
flows which are generated by the interaction of the converging
flow with the Coriolis force at the cell edges. In the rapid ro-
tation case (the bottom row, set Co10) the convective pattern
is dominated by rather irregular small-scale structures, except
for the equatorial case, where the pattern is totally aligned with
the rotation axis, reminiscent of the banana cells seen in some
global convection models (e.g., Brun & Toomre 2002). Such
an alignment is a generic feature of the convective motions in
the rapid rotation regime, as can be seen from Fig. 5, where
xz-slices of temperature fluctuations overplotted with velocity
field vectors are shown from the run Co7-60.

5.2. Velocity field characteristics

In Tables 1 and 2 we have calculated some diagnostics
of the velocity field. Comparing the total and fluctuating
rms-velocities (Cols. 6 and 7, respectively), one can note that
both tend to decrease towards the poles and increase steeply
near the equator for rapid rotation. A similar trend can be seen
in the azimuthal and vertical velocity field components (Cols. 9
and 10). This is partly due to the fact that the convection is
more efficient in the equatorial regions compared to the polar
ones (see Sect. 5.4), partly because the increasing rotational

Motivation: Origin of Large-scale Magnetic Field
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Figure 1. Convective structures and mean flows in cases D3 and H3. (a) Radial velocity vr in dynamo case D3, shown in global Mollweide projection at 0.95 R!, with
upflows light and downflows dark. Poles are at top and bottom and the equator is the thick dashed line. The stellar surface at R! is indicated by the thin surrounding
line. (b) Profiles of mean angular velocity Ω(r, θ ), accompanied in (c) by radial cuts of Ω at selected latitudes. A strong differential rotation is established by the
convection. (d) Profiles of meridional circulation, with sense of circulation indicated by color (red counterclockwise, blue clockwise) and streamlines of mass flux
overlaid. (e)–(h) Companion presentation of fields for hydrodynamic progenitor case H3. The patterns of radial velocity are very similar in both cases. The differential
rotation is much stronger in the hydrodynamic case and the meridional circulations there are somewhat weaker, though their structure remains similar.
(A color version of this figure is available in the online journal.)

large and we can achieve modestly high magnetic Reynolds
numbers even at low Pm. Second, the differential rotation
becomes substantially stronger with both more rapid rotation Ω0
and with lower diffusivities ν and η. This global-scale flow is an
important ingredient and reservoir of energy for these dynamos,
and the increase in its amplitude means that low Pm dynamos
can still achieve large magnetic Reynolds numbers based on this
zonal flow. Lastly, the critical magnetic Reynolds number for
dynamo action likely decreases with increasing kinetic helicity
(e.g., Leorat et al. 1981), and helicity generally increases with
rotation rate (e.g., Käpylä et al. 2009). Indeed, there are even
suggestions that the presence of a mean shearing flow may
lower the critical magnetic Reynolds number (Hughes & Proctor
2009), and the strong differential rotation present in these rapidly
rotating suns may serve to lower this threshold for dynamo
action. We find that the rapidly rotating flows considered here
achieve dynamo action at somewhat lower Rm than the models
of Brun et al. (2004), which rotated at the solar rate.

3. DYNAMOS WITH PERSISTENT MAGNETIC WREATHS

We here explore case D3 which yields fairly persistent
wreaths of magnetism in its two hemispheres, though these
do wax and wane somewhat in strength once established.
Examining the properties of this dynamo solution should help
to provide a perspective for the greater variations realized in our
time-dependent dynamos which will be discussed in a following
paper.

3.1. Patterns of Convection

The complex and evolving convective structures in our dy-
namo cases are substantially similar to the patterns of convection
found in our hydrodynamic simulations. Our dynamo solution
rotating at three times the solar rate, case D3, is presented in
Figure 1, along with its hydrodynamic progenitor, case H3. The

radial velocities shown near the top of the simulated domain
(Figures 1(a) and (e)) have broad upflows and narrow down-
flows as a consequence of the compressible motions. Near the
equator the convection is aligned largely in the north–south di-
rection, and these broad fronts sweep through the domain in
a prograde fashion. The strongest downflows penetrate to the
bottom of the convection zone; the weaker flows are partially
truncated by the strong zonal flows of differential rotation. In
the polar regions, the convection is more isotropic and cyclonic.
There the networks of downflow lanes surround upflows and
both propagate in a retrograde fashion.

The convection establishes a prominent differential rotation
profile by redistributing angular momentum and entropy, build-
ing gradients in latitude of angular velocity and temperature.
Figures 1(b) and (f) show the mean angular velocity Ω(r, θ ) for
cases D3 and H3, revealing a solar-like structure with a prograde
(fast) equator and retrograde (slow) pole. Figures 1(c) and (g)
present in turn radial cuts of Ω at selected latitudes, which are
useful as we consider the angular velocity patterns realized here
with faster rotation. These Ω(r, θ ) profiles are averaged in az-
imuth (longitude) and time over a period of roughly 200 days.
Contours of constant angular velocity are aligned nearly on
cylinders, influenced by the Taylor–Proudman theorem.

In the Sun, helioseismology has revealed that the contours of
angular velocity are aligned almost on radial lines rather than
on cylinders. The tilt of Ω contours in the Sun may be due
in part to the thermal structure of the solar tachocline, as first
found in the mean-field models of Rempel (2005) and then in 3D
simulations of global-scale convection by Miesch et al. (2006).
In those computations, it was realized that introducing a weak
latitudinal gradient of entropy at the base of the convection zone,
consistent with a thermal wind balance in a tachocline of shear,
can serve to tilt the Ω contours toward a more radial alignment
without significantly changing either the overall Ω contrast with
latitude or the convective patterns. Ballot et al. (2007) explored

■ Global Simulation: ■ Local Box Simulation:

Brown et al. 2010 Kapyla et al. 2004

■ Long-standing Issue in the solar dynamo simulation：
   How and Where is “Large-scale Magnetic Field (LMF)” generated ?

Turbulent field can be amplified and sustained in both dynamo simulations.

(Brandenburg+, Tobias+....)(Miesch+, Charbonneau+, Kapyla+...)

A purpose of our work is to find some hints for this issue by local box simulations.

A lot of numerical studies on the solar dynamo.....

.. ..



Numerical Setting：Local Cartesian Box
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■ Initial Setting：Hydrostatic Polytropic 3 Layers Structure. 
                             （Top: cooling layer + Mid: convection + Bottom: overshoot）.

■ A local portion of the solar interior is modeled in a Cartesian domain. 

■Uniqueness: The direction of rotation axis (Coriolis force) is a control parameter. 

"

■ Compressible MHD equations are solved in rotating frame.
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By changing the direction of the rotation axis, we can change and 
control the latitudinal location of the simulation box. 

This model can simulate the spherical solar dynamo site by changing the rotation axis.



Numerical Setting：Local Box Simulation
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■ Numerical Scheme：Godunov CMoC-CT

■ Resolution：Nx!Ny!Nz = 256!256!128　
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■ Horizontal B.C.: Periodic B.C.

■ Vertical B.C.: 
   - stress free B.C. for V at z0 and z3

   - open field B.C. for B @ z0

     perfect conductor B.C. for B @z3

   - T = const. @z0

     "T/"z = const. @z3

■ Control Parameters：
　diffusivities：$, %, & (fixed here)
    strength of the stratification：'  (fixed)
　latitude："　angular velocity：!

cooling layer（convectively stable）

(Sano et al. 1998)



■ Generation of LMFs was found, for the first time, by Kapyla et al. 2009.
■ The cyclic variation of the LMFs was reported in Kapyla et al. 2011.
■ All the models in Kapyal et al. focus on the polar region with "=90°.
■ No sufficient explanations on the generation and cyclic variation 
   mechanisms of LMFs appeared in local box simulations.  

Current Status of Local Convective Dynamo Simulation
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Figure 2. Same as Fig. 1 but for oscillatory α-shear dynamo Run A2 (a) and α2 dynamo Run C1 (b).

(a) (b)

Figure 3. Phase diagrams for the same runs as in Fig. 2.

functions of z whereas in the more rapidly rotating Run C2 the large-scale fields depend also on x and y.
Furthermore, the oscillatory nature of the solution is not so clear. Figure 3(b) shows the phase diagram
of the horizontal components of the large-scale field in Run C1. There is a phase shift of π/2.
The saturation level of the dynamo is sensitive to the magnetic Reynolds number. Decreasing Rm from

66 to 39 by doubling the value of η, decreases the saturation field strength by a factor of three (Run C1b).
Another doubling of η shuts the dynamo off (Run C1c).
Our standard setup in the present paper is to use perfect conductor boundaries at the bottom and

vertical field conditions at the top. Changing also the lower boundary to vertical field conditions produces
no discernible difference in the solution (Run C1d). However, imposing perfect conductor conditions on
both boundaries decreases the saturation strength to less than a half of the standard setup and decreases
the fraction of the large-scale field (Run C1e). We have not, however, studied the Rm-dependence of the
saturation field strength in this case (cf. Käpylä et al. 2010a).

4 Conclusions

We have presented results from simulations of turbulent magnetized convection both with an imposed
shear flow using the shearing box approximation (Sets A and B) and in rigidly rotating cases (Set C). In
accordance with previous results, we find the generation of dynamically important large-scale magnetic
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the amplitudes of the three smallest wavenumbers are shown as
functions of rotation. Substantial large-scale fields are observed
only for the two largest values of Co; for Co ! 1.5 the runs
show very weak large-scale contributions. This is also visible
in the two-dimensional power spectra, taken from the middle of
the convectively unstable layer, see Figure 9. The most rapidly
rotating case (Run B6) is the only one showing clear signs of
large-scale fields, in accordance with the fact that the large-scale
field is only periodically present in Run B5. The velocity spec-
tra in the saturated state are similar to those in the kinematic
phase.

In comparison to earlier studies of rotating convection (e.g.,
Cattaneo & Hughes 2006; Tobias et al. 2008), we note that it is
characteristic of these studies that when the Rayleigh number is
increased, the Taylor number is kept constant. Increasing Ra in
these models generates a larger urms and this inevitably means
that the Coriolis number decreases as the Rayleigh number is
increased, i.e., for a fixed Ta the rotational influence is large for a
small Rayleigh number and vice versa. For example, in the paper
of Cattaneo & Hughes (2006), the smallest Rayleigh numbers
in combination with Ta = 5 × 105 gives a Coriolis number
comparable to our largest values. However, these simulations
do not exhibit dynamo action due to a too low Rm, whose
value also depends on urms. For their highest Rayleigh number
case, however, Rm is large enough for dynamo excitation but
the Coriolis number is smaller by approximately an order
of magnitude and no large-scale fields are observed. Similar
arguments apply to the simulations of Tobias et al. (2008).

We find that the large-scale dynamo is excited for all box
sizes for the most rapidly rotating case explored in the present
study, as is evident from the spectra shown in Figure 10. From
the spectra it would seem that an increasing amount of energy
is in the large scales as the box size increases. The growth rate
of the total field does not show any clear trend with the system
size: the largest departure from a constant growth rate is the
somewhat lower value for Run B6 with the intermediate box
size (see Figure 11).

Figure 11 shows the sums of the Fourier amplitudes of the
three smallest wavenumbers as functions of the system size.
For the smallest box (Run A6), the large-scale field is more
concentrated on the k/k1 = 0 contribution, whereas in Run B6
with LH/d = 4 the amplitudes for k/k1 = 0 and 1 are similar.
For the largest domain size the k = 0 mode is significantly
weaker than the k/k1 = 1 and 2 modes. These results suggest

Figure 6. Root-mean-square total magnetic field as a function of time for four
magnetic Reynolds numbers for Runs A6–A9.

that for the present parameters the maximum size of the large-
scale structures is somewhere in the range 2 < Lmax/d < 8.

Comparing the saturation level of the large-scale magnetic
field in the small box Runs A7, A6, and A10 shows a significant
decrease in the m = 0 component in Run A10 whereas the
strength of the m = 1 mode is only mildly affected. On the
other hand, comparing Runs B6 and D1 with a larger domain
size shows again a decreasing m = 0 contribution in Run D1 but
a two times larger m = 1 component. However, these numbers
should be taken only as a rough guide because the large-scale
contribution to the magnetic field shows large fluctuations and
the higher Rm runs are fairly short. Taken at face value, the
results would seem to suggest that the strength of the m = 0
mode decreases with increasing Rm and that the m = 1 mode
remains unaffected or that it can even increase. We note that the
highest Rm runs also have larger fluid Reynolds and Rayleigh
numbers which means that also the flow is more turbulent
in those cases which could affect the dynamo and thus the
saturation level of the large-scale field.

Although we have used open (VF) boundary conditions that
do permit magnetic helicity fluxes, such fluxes may not actually
occur unless they are driven toward the boundaries by internal
magnetic helicity fluxes. One such flux is the Vishniac & Cho
(2001) flux, but it requires shear which is absent in our case.
Other fluxes are possible (Subramanian & Brandenburg 2006),
but we do not know how efficient they are in our model. It is

Figure 5. Magnetic field component Bx for Run D1 in the kinematic (left panel) and saturated (right) states. The sides of the box show the periphery of the
domain whereas the top and bottom panels show the field from the top (z = d) and bottom (z = 0) of the convectively unstable layer, respectively. See also
http://www.helsinki.fi/∼kapyla/movies.html.
(A color version of this figure is available in the online journal.)

■ Kapyla, Korpi & Brandenburg 2009 ■ Kapyla, Mantere & Brandenburg 2011

1) Can LMFs be generated in the local box located on the other latitudes ?

2) What is the mechanism for the generation and cyclic variation of LMFs ?

※ Tow questions naturally arise....

.. .. .. ..

.. ..

.. ..

.. ..

.. ..



Re ~ 100
Rm ~ 400

Pr = 0.86
Pm = 4.0
Ra = 2.8x106

! = 0.4

We fix control parameters 
in the following:

Convective Dynamo Simulation
(By field at the saturated state is visualized by 3D volume rendering)

Blue: negative By components
Red:   positive By components

(Nx ,Ny ,Nz) = (256,256,128)

Ro ~ 0.025

(Polar region model with "＝90°)

(Lx ,Ly ,Lconv) = (4,4,1)

C.Z.
overshoot zone

By changing the co-latitude ", we study the generation and 
cyclic variation mechanisms of LMFs in the following.

(similar 
parameters with 
Kapyla’s model)

Generation of LMFs in the bottom of C.Z. and 
their reversals can be observed in this movie.
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 The "-dependence of magnetic field structures：
Generation of Large-scale Magnetic Fields (LMFs)

■ LMFs are generated at almost all the latitude except the equatorial region. 
■ Common generation site of LMFs is the bottom of convective zone.

A
zim

u
th

al Field
: B

y

A
zim

u
th

al Field
: B

y
A

zim
u

th
al Field

: B
yfocus!

■ Time-evolution of horizontally averaged By field as a function of z (height). 
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※There is a phase difference of 90° between !Bx" and !By".

■ Clear evidence of cyclic variations of Bx and By fields.



■ Local Convective Dynamo Simulation with Ro ≒ 0.025.
■ Coherent LMFs is generated except the model at "=0° [equator].

■ Overshoot zone seems to play an important role in sustaining 

A part of our Future works:

■ Long-term evolution of the models located at the different latitudes. 
■ large Ro (Rossby number) model similar to that realized in solar C.Z..

Summary: 

This work adopts control parameters Pr = 0.86, Pm = 4.0, Ra = 3"106, !＝0.4

■ Common generation site of LMFs is the bottom of C.Z. 

　- coherent vortex sheets with alternating vortices,
　- and thus LMFs in the bottom of C.Z..

What is the most important factor for the “Solar Dynamo” ??
■ Global simulation of solar-type convective dynamo with Yin-Yang Grid.

■ We should reveal the formation mechanism of vortex sheets. 

■ Vortex sheets with alternating vortices would induce cyclic variations of LMFs.


