Protostellar collapse of magneto-turbulent cloud core: formation of protoplanetary disks and outflows

Tomoaki Matsumoto
(Hosei University)

Masahiro Machida (Kyushu University)
Shuichiro Inutsuka (Nagoya University)
Scenario of star formation: from cloud to protostar

Orion molecular cloud (optical + radio)
Sakamoto et al. (1994)

Cloud Core in Taurus (radio)
Onishi et al. (1999)

Protostar and outflow (radio)
Gueth & Guilloteau (1999)

1-10 AU
0.01 AU

First core
Protostar

$1 \text{AU}/0.1 \text{pc} = 5 \times 10^{-5}$
Modeling of protostellar collapse

<table>
<thead>
<tr>
<th>Physics</th>
<th>Numerical methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravitational collapse</td>
<td>Adaptive mesh refinement (AMR)</td>
</tr>
<tr>
<td></td>
<td>Poisson equation for selfgravity with a multigrid method</td>
</tr>
<tr>
<td>Interstellar gas</td>
<td>MHD equation</td>
</tr>
<tr>
<td>- partially ionized gas</td>
<td>- Explicit HLLD scheme</td>
</tr>
<tr>
<td>Protostar</td>
<td>Sink particle</td>
</tr>
<tr>
<td></td>
<td>- Lagranian particle</td>
</tr>
<tr>
<td>Magnetic diffusion</td>
<td>Implicit schemes with a multigrid method</td>
</tr>
<tr>
<td>- ambipolar diffusion,</td>
<td>- advantage of our scheme!</td>
</tr>
<tr>
<td>Hall effect,</td>
<td></td>
</tr>
<tr>
<td>Ohmic dissipation</td>
<td></td>
</tr>
</tbody>
</table>
AMR
Block-structured AMR
Double Mach reflection by SFUMATO

Density

![Density Plot](image)
Sink particles

a subgrid model for a protostar
Tests for sink particles

The sink particle is a Lagrangian particle moving on Eulerian grids. It interacts with gas only via gravity and accretion.

c.f., Krumholz+02 for ORION
Federrath+10 for FLASH
Collapse of a singular isothermal sphere: Accretion onto a sink particle

density

- **sink radius**: Gas within the sink radius accretes onto the sink particle.

infall velocity

- **black lines**: exact solution
- **colors**: grid level of AMR
- **dots**: numerical solution

radius

radius
Magnetic diffusion
AD, HE, OD
Method for magnetic diffusion

Induction equation

\[
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) - \nabla \times (\eta \nabla \times \mathbf{B}) + \nabla \times \left[\frac{c}{4\pi en_e} \mathbf{B} \times (\nabla \times \mathbf{B}) \right] + \nabla \times \left\{ \frac{1}{4\pi \gamma \rho_n \rho_i} \mathbf{B} \times [\mathbf{B} \times (\nabla \times \mathbf{B})] \right\}
\]

Operator splitting

- advection
- Ohmic dissipation
- Hall effect
- Ambipolar diffusion

explicit scheme

implicit scheme

with MG
Decay of Alfven wave with AD

\[\gamma = \text{drag coefficient} \]
Decay of Alfven wave with AD

Ideal MHD

Strong AD

\[
\frac{D\Delta t}{\Delta t^2} = 0, \ 1.28, \ 2.56, \ 12.8 \\
\text{for } \gamma = \infty, \ 1000, \ 500, \ 100
\]

\(\gamma = \text{drag coefficient} \)
C-shock problem with AD.

Fig. 2.—Cartoon of oblique C-shock structure, showing field lines, the direction of shock propagation, and the coordinate system. This problem is set up by starting off with a uniform flow toward the wall and allowing the C-shock to form naturally.

Mac Low+ 95
C-shock: without AD

\[\rho, \quad \rho \]

\[v_x, \quad v_x \]

\[v_y, \quad v_y \]

\[B_y, \quad B_y \]

Simple accretion shock

\[M = 50, \ MA = 5, \ \theta = 45^\circ \]
C-shock: with AD

\[M = 50, \ MA = 5, \ \theta = 45^\circ, \ \rho_i = 10^{-5} \]
Comparison with exact sol.: $M=50$, $MA=5$, $\theta=45^\circ$
Protostellar collapse
Importance of turbulence and magnetic fields

- **Turbulence**
 - Interstellar medium is turbulent.
 - Supersonic turbulence on cloud scale
 - Subsonic turbulence on cloud core scale
 - Scaling law: $\Delta v \propto L^{1/2}$ (Larson 95)
 - Turbulence is origin of rotation (Burkert & Bodenheimer 00)
 - spin of protostar, rotation of protoprametary disk, driven mechanism of outflow/jet, etc.

- **Magnetic field**
 - Interstellar magnetic fields are strong.
 - Magnetic energy \sim gravitational energy
 - Resistivity is effective in high density.
Initial condition of cloud cores

Density
BE sphere $\times (1.25-10)$
Center: 2×10^5/cc
Radius: $0.049 - 0.14$ pc
Mass: $1.2 - 28$ M$_\odot$
Temp.: 10K

Magnetic fields with OD:
$0.1, 0.25$ B$_{cr}$
$20 - 143$ μG

Turbulence
$\langle v^2 \rangle \propto k^{-4}$
Mean Mach number
$= 0.5, 1, 3$

Calculation
Cray-XT4@CfCA,
Hitachi-HA8000@T2K
M=1, B=0.1Bcr:
Outflow and disk formation

(200 AU)^3
(20 AU)^3
0.12pc
M = 1, B = 0.25Bcr:
Outflow and disk formation

(200 AU)^3

(20 AU)^3

0.12pc

x-y plane

y-z plane

cavity

outflow

(20 AU)^3
Cavity is filled by strong magnetic field.

Strong B

$\beta = 10^{-4}$

Cavity

Decoupled magnetic field creates the cavity.

(200AU)3

green: $\rho = 3.E4 \rho_0$

blue: $v_r = 8 \, c_s$

Sink particle
(20AU)^3

1,000 yr after protostar formation

M=0.5, B=0.25Bcr

M=1, B=0.25Bcr

M=3, B=0.25Bcr

M=0.5, B=0.1Bcr

M=1, B=0.1Bcr

M=3, B=0.1Bcr
Growth of disks: regulated by turbulence and magnetic field

\[r_{\text{cent}} = \frac{\bar{j}^2}{G(M_{\text{gas}} + M_{\text{sink}})} \]

\[\bar{j} = \frac{J_{\text{gas}}}{M_{\text{gas}}} \]

Strong turbulent and weak mag field models

Weak turbulent models
Summary

• Our AMR code, SFUMATO:
 – A block-structured AMR is adopted.
 – Selfgravity, MHD, sink particles, magnetic diffusion are implemented.

• A turbulent magnetized cloud core produces a protostar with a protoplanetary disk and outflows.
 – Turbulence brings about rotation of a disk.
 • Strong turbulent models produces a large disk.
 – Rotation and magnetic field drive outflows.
 – Cavity is created by decoupled magnetic field.
 • which corresponds to “a magnetic wall” (Li & McKee 1996).