Protostellar collapse of magneto-turbulent cloud core: formation of protoplanetary disks and ouflows

> Tomoaki Matsumoto (Hosei University)

Masahiro Machida (Kyushu University) Shuichiro Inutsuka (Nagoya University)

Scenario of star formation: from cloud to protostar

Modeling of protostellar collapse

Physics	Numerical methods
Gravitational collapse	 Adaptive mesh refinement (AMR) Poisson equation for selfgravity with a multigrid method
 Interstellar gas partially ionized gas 	 MHD equation Explicit HLLD scheme
Protostar	 Sink particle Lagranian particle
 Magnetic diffusion ambipolar diffusion, Hall effect, Ohmic dissipation 	 Implicit schemes with a multigrid method advantage of our scheme!

ANR

Block-structured AMR

Double Mach reflection by SFUMATO

Density

Sink particles a subgrid model for a protostar

Tests for sink particles

The sink particle is a Lagrangian particle moving on Eulerian grids. It interacts with gas only via gravity and accretion.

1

Collapse of a singular isothermal sphere: Accretion onto a sink particle

8

Nagnetic diffusion AD, HE, OD

Method for magnetic diffusion

Induction equation

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) \qquad \text{advection} \qquad \text{explicit scheme} \\ -\nabla \times (\eta \nabla \times \mathbf{B}) \qquad \text{Ohmic dissp.} \\ +\nabla \times \left[\frac{c}{4\pi e n_e} \mathbf{B} \times (\nabla \times \mathbf{B}) \right] \qquad \text{Hall effect} \qquad \text{implicit scheme} \\ +\nabla \times \left\{ \frac{1}{4\pi \gamma \rho_n \rho_i} \mathbf{B} \times \left[\mathbf{B} \times (\nabla \times \mathbf{B}) \right] \right\} \text{ ambipolar diff.} \qquad \text{with MG}$$

Operator spliing

Decay of Alfven wave with AD

γ = drag coefficient

11

Decay of Alfven wave with AD

C-shock problem with AD.

FIG. 2.—Cartoon of oblique C-shock structure, showing field lines, the direction of shock propagation, and the coordinate system. This problem is set up by starting off with a uniform flow toward the wall and allowing the C-shock to form naturally.

Mac Low+ 95

C-shock: without AD

 $M = 50, MA = 5, \theta = 45^{\circ}$

C-shock: with AD

M = 50, MA = 5, θ = 45°, ρ_i = 10⁻⁵

Comparison with exact sol.: M=50, MA=5, θ =45°

Protostellar

collapse

Importance of turbulence and magnetic fields

Turbulence

- Interstellar medium is turbulent.
- Supersonic turbulence on cloud scale
- Subsonic turbulence on cloud core scale
- Scaling law: $\Delta v \propto L^{1/2}$ (Larson 95)
- Turbulence is origin of rotation (Burkert & Bodenheimer 00)
 - spin of protostar, rotation of protoprametary disk, driven mechanism of outflow/jet, etc.

Magnetic field

- Interstellar magnetic fields are strong.
- Magnetic energy ~ gravitational energy
- Resistivity is effective in high density.

Initial condition of cloud cores

Density BE sphere $\times(1.25-10)$ Center: 2×10⁵/cc Radius: 0.049 – 0.14 pc Mass: $1.2 - 28 M_{\odot}$ Temp.: 10K Magnetic fields with OD: 0.1, 0.25 B_{cr} $20 - 143 \ \mu G$ Turbulence $<v^{2}> \infty k^{-4}$ Mean Mach number = 0.5, 1, 3 Calculation Cray-XT4@CfCA, Hitachi-HA8000@T2K

Cavity is filled by strong magnetic field.

(20AU)^3

1,000 yr after protostar formation

Growth of disks: regulated by turbulence and magnetic field (M, α) = 0.5, 0.1) Mean centrifugal radius 0.1) 0.1) 0.25) Strong turbulent and weak mag field models 0.25) r_{keplar} [AU] 0.25) 2 $r_{\rm cent}$ $G(M_{\rm gas} + M_{\rm sink})$ Weak turbulent models gas 200 400 1000 600 800 0 time [yr] Elapse time after sink particle formation 24

Summary

- Our AMR code, SFUMATO:
 - A block-structured AMR is adopted.
 - Selfgravity, MHD, sink particles, magnetic diffusion are implemented.
- A turbulent magnetized cloud core produces a protostar with a protoplanetary disk and outflows.
 - Turbulence brings about rotation of a disk.
 - Strong turbulent models produces a large disk.
 - Rotation and magnetic field drive outflows.
 - Cavity is created by decoupled magnetic field.
 - which corresponds to "a magnetic wall" (Li & McKee 1996).