Static Compression Process of Dust Aggregates in Protoplanetary disks

Akimasa Kataoka (SOKENDAI/NAOJ)

H.Tanaka(Hokkaido Univ.), S.Okuzumi(Nagoya Univ.), Koji Wada (Chibatech)

time =0.00c+000

Planet Formation Theory

Nov. 1, 2012, Akimasa Kataoka, EANAM in Kyoto

Porosity

Recent studies have shown that dust grains grow to highly porous aggregates

cf). Wada et al. 2007, 2009, 2011, Suyama et al. 2008,2012, Okuzumi et al. 2009,2012

Planetesimal formation with fluffy aggregates

internal density

Aim of this work

internal density

Simulation model

Particle-particle interaction b а cf).Seizinger et al. 2012 (a) Repulsion / Adhesion (b) Rolling (c) Sliding (d) Twisting

cf).Dominik & Tielens 1997, Wada et al. 2007

We use N-body simulation to investigate compression process

Nov. 1, 2012, Akimasa Kataoka, EANAM in Kyoto

Initial condition : BCCA Particle number : 6×10⁴ Monomer : 0.1µm, ice

Result

Pressure in protoplanetary disks

Gas pressure

$$\rho_{\rm equi,gas} = 10^2 \left(\frac{R}{1[\rm km]}\right)^4 [\rm g/cm^3].$$

$$\rho_{\rm equi,grav} = 10^{-2} \left(\frac{R}{1[\rm km]}\right)^2 [\rm g/cm^3],$$

Planetesimal formation via fluffy aggregates

internal density

Successful pathway of planetesimal formation

Conclusion

- We investigate the growth process from highly porous aggregates to planetesimals.
 - We perform N-body simulations with particle-particle interaction.
 - We derive the equation of state of dust aggregates in static compression process.
 - Using the equation of state, we showed the successful pathway from highly porous aggregates to planetesimals in protoplanetary disks.