Formation of Turbulent and Magnetized Molecular Clouds

Inoue & Inutsuka 2012, ApJ, 759, 35

Tsuyoshi Inoue Aoyama Gakuin University

Collaborator: Shu-ichiro Inutsuka (Nagoya Univ.)

Introduction

- □ Molecular clouds (MC): site of all present-day star formation.
 - However, physical conditions of MCs (e.g., *B* and δv) are poorly understood.
 - Physical conditions are crucial to determine initial condition of SF (PPD), IMF ...
- □ Simulating MCs from their formation: promising way to understand physical conditions.
 - To perform simulations, we need scenario or model of MC formation.
- Recent observations of MCs in nearby galaxies suggest that (Britz+07, Kawamura+09,

Fukui+09)

- MCs evolve by accretion of HI clouds with $\langle n \rangle \sim 10 \text{ cm}^{-3}$.
- \bullet Estimated accretion velocity: $v \sim 10 \ km/s$

We expect that MCs are formed by shock compression of HI clouds

• Possible scenarios: (i) massive HI super-shell swept up by galactic spiral shock

(ii) collision of HI super-shells

(iii) gravitational contraction of HI super-shell

HI clouds as a building block of MCs

□ In this study, we generate HI clouds (building block of MC) also by MHD simulation.

- Basic eqs.: Ideal MHD + optically thin ISM cooling/heating + thermal conduction.
- Resolution: (20 pc)³ domain are divided into 1024³ cells ($\delta x \sim 0.02$ pc)

- typical HI clouds are formed by thermal insta. from thermally unstable equilibrium state (Inoue & Inutsuka 08, 09, see also Audit & Hennebelle 10)
- Thermal instability generates HI clouds (n ~ 30 cm⁻³, T ~ 100 K) that are embedded in diffuse warm medium (n ~ 1 cm⁻³, T ~ 6000 K).
- Initially homogeneous **B** with $\langle B \rangle = 5 \ \mu G$.
- n, T, B and configuration of HI clouds agree well with 21cm observations (Heiles&Troland 03,05).
- $\langle n \rangle = 5 \text{ cm}^{-3}$ is also consistent with observed HI medium accreting to MCs (Fukui+09).

To start MC formation, we set converging flows of the HI medium with v_{coll} = 20 km/s.
 copy of initial HI medium continuously flow from x-boundary planes.

Microphysics: Chemical Reactions

- Formation of molecules is taken into account including UV shielding effects, in order to calculate ``molecular" cloud formation appropriately (see also Glover+10).
 - 28 chemical reactions between species of H, H₂, p, He, He⁺, C⁺, C, and CO

Refs: Tilelens & Hollenbach 85; Draine & Bertoldi 96; Hollenbach & McKee 89; Millar+ 97; Shapiro & Kang 87; Nelson & Langer 97)

Microphysics: Cooling/Heating

□ Following cooling/heating are taken into account.

- Cooling/Heating: 8 processes
- ✓ Photo-electric heating by PAH: UV shielding by dust is included
- ✓ CR heating
- ✓ H₂ photo-dissoc. heating: self & dust UV shielding is included
- ✓ Ly- α emission
- ✓ C⁺ fine-structure (158µm): escape probability is calculated
- ✓ O fine-structure (63µm):
 escape probability is calculated
- ✓ CO ro-vibration lines: escape probability is calculated
- $\checkmark~$ Electron recombination cooling on dust

Result: 2D slice of density

- Converging flows induce two shock fronts.
- Shock fronts are deformed when clouds hit the fronts (Richtmyer-Meshkov Insta.).
- Because vorticity is not a conserved variable across a shock, turbulence is generated behind the curved shock (Crocco's theorem).
 - $\checkmark\,$ for molecular gas component: $\delta v \sim 3 \ km/s \ (cs \sim 0.3 \ km/s)$

Result after 10 Myr Accretion

D 3D density snapshot at 10 Myr

- Structure is very inhomogeneous ($n \sim 1-10^4 \text{ cm}^{-3}$) and non-isothermal ($T \sim 10 10^4 \text{ K}$).
- Diffuse warm gas ($n\sim 1-10$ cm⁻³, $T > 10^3$ K) survives even deep inside MC, despite cooling timescale < 1 Myr.
 - ✓ Turbulent mixing can provide warm gas before it is cooled.

Velocity dispersion of diffuse gas component: $\Delta v \sim 10 \text{ km/s}$ \rightarrow Mixing length in cooling time: $l \sim 10 \text{ pc}$

Temporal Evolution

Evolution of energies in numerical domain except accreting HI gas.

- dotted red: CO fraction weighted turbulent kinetic energy $\rightarrow E_{turb}$ in cold gas
- $E_{\text{turb, CO}}$ is roughly an order of magnitude smaller than total energy of turbulence E_{turb} .

 \rightarrow Most of turbulent energy is in diffuse warm gas

 \rightarrow Estimation of E_{turb} by molecular emission linewidth underestimate true energy.

Physical State of Clumps

Evolution of dense clumps in simple virial diagram

dense clumps evolve towards gravitationally bound (supercritical) cores through a similar path in virial diagram.

Typical initial condition of star formation?

 $E_{mag} \sim E_{turb} + E_{th}$

- ----- : threshold for core fragmentation into binary stars derived by Machida+04
- Clumps seem to evolve into cores that form binary stars
- rotation is apparently faster than observed cores. However, observation is known to underestimate it in turbulent core(Dib+10)

Mass Function of Clumps

Mass function of clumps depends on density

- $n \sim 100 \text{ cm}^{-3}$: $dN/dm \propto \text{m}^{-1.8}$
- $n \ge 1,000 \text{ cm}^{-3}$: dN/dm $\propto \text{m}^{-2.3}$
- ✓ Spectral index of low density clumps can be understood by fragmentation by thermal instability (Hennebelle & Audit 07).
- ✓ Spectral index of high mass tail for dense clumps ¹⁰⁰⁰⁰
 ~ Salpeter IMF index (why?, Andre+10) 1000

Consistent with observations that suggest CMF is already determined in lower density gas of $n\sim 1000\ cm^{-3}$ (Ikeda+07, 09)

- Clumps evolve by clump-clump collision
 - → Origin of CMF (and hopefully IMF) may be understood by studying clump evolution by clump-clump collision.

Summary

- We have studied molecular cloud formation via accretion of HI clouds.
- Newly-formed molecular cloud is highly inhomogeneous and non-isothermal.
 - roughly 50% of volume is filled by diffuse warm gas due to efficient turbulent mixing.
- Turbulence is generated behind deformed accretion shocks.
 - Δv in molecular gas ~ 3 km/s, Δv in diffuse gas ~ 10 km/s.
 - Total energy of turbulence in the sysytem is determined by turbulent diffuse warm gas.
- Molecular clumps evolve through certain path in virial diagram towards gravitationally bound, magnetically supercritical cores.
 - typical initial condition for star formation? : $E_{mag} \sim E_{turb} + E_{th}$

Mass function of clumps depends on density:

- $dN/dm \propto m^{-1.7}$ for $n \sim 100 \text{ cm}^{-3}$ (consisitent with Hennebelle & Audit 07 and Kramer+96).
- $dN/dm \propto m^{-2.3}$ for $n > 1000 \text{ cm}^{-3}$ (consisitent with Andre+ 07 and Ikeda+07, 09).

Formation of Filaments by Clump-clump Collision

Size-Velocity Dispersion Relation

size-velocity dispersion relation

• $\Delta v \sim 1.5$ (*l* /1 pc)^{0.5} km s⁻¹

Relation does NOT depend on density.

Distribution of B Strength

Microphysics: Equilibrium

Molecules are not formed due to photo-dissociation.

Dominant cooling process in CNM is C⁺ 158 μ m emission.

Microphysics: Equilibrium

Molecules are formed owing to shielding effect.

Dominant cooling process in dense gas is CO emission.