Nonlinear Instability of The Cold Cloud in a Two-Phase Interstellar Medium

Ui-Han Zhang, Hsi-Yu Schive and Tzihong Chiueh (Department of Physics, National Taiwan University)

East Asia Numerical Astrophysics Meeting @Kyoto 11/01/2012

Outline

- Sonoluminescence
- Governing Equations
- Result
- Conclusions

Sonoluminescence

• Soft air bubble is compressed by the resonant ultrasonic wave in a hard liquid.

Two-Phase Interstellar Medium

Cold molecular cloud: soft ($\gamma = 0.7$)

For Example:

Cloud size ~ 100pc

Cloud Mass ~ 10⁵ M_{sum}

Cloud temperature = 100K

Characteristic time ~ 10⁷ yr

Hydrogen number density of the cloud $\sim \frac{10^2}{\text{cm}^3}$

Outline

- Sonoluminescence
- Governing Equations
- Result
- Conclusions

Governing Equations

$$\begin{split} &\partial_{t}\rho + \nabla \cdot (\rho \mathbf{V}) = 0 \\ &\partial_{t}(\rho \mathbf{V}) + \nabla \cdot (\rho \mathbf{V} \otimes \mathbf{V} + P\underline{\mathbf{I}}) = -\rho \nabla \Phi \\ &\partial_{t}E + \nabla \cdot ((E + P)\mathbf{V}) = -\rho \mathbf{V} \cdot \nabla \Phi \\ &\nabla^{2}\Phi = 4\pi G\rho \\ &E = e + \frac{1}{2}\rho(\mathbf{V} \cdot \mathbf{V}) \\ &e = \rho \int_{0}^{\rho} [\frac{P(S, \rho')}{{\rho'}^{2}}]_{S} d\rho' \qquad ; P = a(S)(\frac{\rho}{\rho_{0}})^{\widetilde{\gamma}(\rho)} \\ &\widetilde{\gamma}(\rho) \equiv \gamma_{0} - \Delta \gamma \tanh\left(\frac{\ln\left(\frac{\rho}{\rho_{0}}\right)}{\delta}\right) \\ &[\text{for ideal gas: } P = a(S)(\frac{\rho}{\rho_{0}})^{\gamma}] \end{split}$$

Outline

- Sonoluminescence
- Governing Equations
- Result
- Conclusions

Result

* The molecular cloud is at the soft gas region. The surrounding gas is at the ideal gas region.

X Characteristic period $\equiv t_{ch}=1$

Gaussian traveling plane wave with amplitude

DB: Root.silo Cycle: 20 Time:0.2

Mesh Var: Palch

Radial mass flux $\equiv r^2 \rho V_r$; Mach number $\equiv \frac{|V_r|}{cs_{cloud}}$; t=0.936

Collapse!

Standing wave : $\rho_{per} = \delta \rho \sin(kx) \cos(2\pi f t + \phi)$

$$min\frac{\delta\rho}{\rho_{gas}}=g(f,\phi)$$

Conclusions

- (1) Sonoluminescence mechanism can trigger the molecular cloud prompt collapse
- (2) The mechanism depends on the frequency and phase. However, the resonance spectrum is broad band.
- (3) The cloud collapses supersonically, and the mass flux is stationary during collapse.
- (4) An irregular cloud can also be subject to triggered collapse, but with a somewhat higher (< 20%) amplitude.

Thank you

- (1) Almost the same in the low density region.
- (2) When the density increases, the pressure in new EOS is always smaller than ideal gas $(\gamma=5/3)$.
 - → Agrees that the fluid would radiate more photons in high density than low density.

Use GAMER code to solve above equations

GAMER: GPU-accelerated Adaptive-MEsh Refinement

Ref: Schive, H., Tsai, Y., & Chiueh, T. (2010)

Choose the unit such that

diameter \cong 125PC

characteristic time $\cong 2.5 \times 10^7 \text{yr}$

mass of the cloud $\cong 10^6 M_{sum}$

number density of the cloud $\cong 10^{1} \sim 10^{2}/_{cm^{3}}$

Compare numbers in the above figure with the Gaussian wave pulse. Explain the choice of gaussian width and distance