The Gravitational Trillion-Body Problem on K computer

Tomoaki Ishiyama (Tsukuba Univ. HPCI Strategic Field Program 5)

co-developer Keigo Nitadori (RIKEN, Advanced Institute for Computational Science)

East Asia Numerical Astrophysics Meeting, Oct 29th – Nov 2th, 2012, Kyoto

Nature of dark matter particle

- The nature of dark matter is still unknown
- One candidate is ~100GeV neutrarlino
 - Self-annihilates and produces gamma-ray (indirect dark matter search)
 - Gamma-ray flux is proportial to (local density)²

- The mass of the smallest halo is comparable to earth-mass (10⁻⁶ solar mass, e.g. Berezinsky+ 2003)
- The smallest halo is denser than larger ones and many of them can survive near Sun (Ishiyama+ 2010)

The structures of the Milky Way system

Dwarf Galaxy

• Baryon (stars, gas, etc) is located in the center of $\sim 10^{12}$ solar mass halo.

Sun

Milky Way

Solar system

Smallest dense halo

- Myriad subhalos (10⁻⁶ ~ 10¹⁰ solar mass)
- Where can we observe gamma-ray flux from dark matter?

1M light year

- The center of the Milky Way halo?
- Dwarf Galaxy ?
- Smallest dense halos near Sun ?

This study

- In order to detect annihilation gamma-ray, we have to know the fine structures of the Milky Way halo
 - The nonlinear evolution of smallest halos
 - How many smallest halos survive at present near Sun?
- Follow the merging, growth of smallest halos
 - The mass of the smallest halo is 18 orders of smaller than the Milky Way
 - The number of particles required is very huge

The Gravitational Trillion-Body Problem

High performance code

science

Cosmology large scale structure

#steps

small

lack numerical challenging

dark matter halo cluster galaxy

fine structure

large

very challenging

рс

TreePM Poisson solver

- Tree for short-range forces
- **PM** for long-range forces
- Drastically reduces the cost of evaluating pairwise forces
- Periodic boundary
- Becomes popular from 21th
 - GADGET-2 (Springel 2005)
 - GOTPM (Dubinski+ 2004)
 - GreeM (Ishiyama+ 2009)

$$\boldsymbol{a}_{i} = \sum_{j \neq i} \frac{m_{j}(\boldsymbol{r}_{j} - \boldsymbol{r}_{i})}{|\boldsymbol{r}_{j} - \boldsymbol{r}_{i}|^{3}} g_{\mathrm{P3M}}(|\boldsymbol{r}_{j} - \boldsymbol{r}_{i}|)/\eta),$$

$$g_{\rm P3M}(R) = \begin{cases} 1 - \frac{1}{140} \left(224R^3 - 224R^5 + 70R^6 + 48R^7 - 21R^8 \right) & (0 \le R \le 1) \\ 1 - \frac{1}{140} \left(12 - 224R^2 + 869R^3 - 840R^4 + 224R^5 + 70R^6 - 48R^7 + 7R^8 \right) & (1 \le R \le 2) \\ 0 & (2 \le R) \end{cases}$$

Difficulties and Overcoming

- Dense stuructures form everywhere via the gravitationaly instability
 - Dynamic domain update with a good load balancer
- Gravity is the long-range force
 - Novel communication algorithm for long communication of PM part
- O (*N* log*N*) is stil expensive
 - SIMD
 - (GRAPEs, GPU)

Dynamic domain update

- Δ Space filling curve
- O multi section
 - Enables each node to know easily where to perform short communications
- x equal #particles
- Δ equal #interactions
- O equal #interactions + correction
 - equal calculation time

Novel communication algorithm for the PM part

- Hierarchical communication
- One MPI_Alltoallv(..., MPI_COMM_WORLD) ->
 - MPI_Alltoallv(..., COMM_SMALLA2A)
 - MPI_Reduce(..., COMM_REDUCE)

Gravity kernel

This implementation is done by Keigo Nitadori as an extension of Phantom-GRAPE library (Nitadori+ 2006, Tanikawa+ 2012a, 2012b)

- Implemented with SIMD builtin functions (Fujitsu C++ compiler)
- Unrolled eight times by hand
- 17 FMA and 17 non-FMA operations for a interaction
- 11.65 Gflops on a simple kernel benchmark
 - 97% of the theoretical limit (12Gflops)

Simulation setup

Performance results

- Scalability (2048³ 10240³)
 - Excellent strong scaling
 - 10240³ simulation is well scaled from 24576 to 82944 (full) nodes of K computer
- Performance (12600³)
 - The average performance on fullsystem is ~5.67Pflops, which correspond to ~55% of the peak speed

Ishiyama, Nitadori and Makino SC12 Gordon Bell prize finalists

Summary and future prospects

- We developed a massively parallel TreePM code for large gravitationlal *N*-body simulations
 - Novel communication algorithm for long-range forces
 - Highly-tuned Gravity Kernel for short-range forces
 - SC12 Gordon Bell prize finalists
- The average performance on fullsystem of K computer is ~5.67Pflops, which correspond to ~55% of the peak speed
- Our implementation enables to perform gravitational trillion-body problem within practical time