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Micro Turbulence in Fusion Device
• aaa

G. McKee et al., Plasma and Fusion Research 2007
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Micro Turbulence in Fusion Device
• Source of trouble and reason… why fusion people want to 

build ever larger machine

ITER
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Outline

• Introduction to gyrokinetic theory

• Issues in gyrokinetic simulation

• Numerical methods for gyrokinetic simulation

• Summary
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Introduction to 
Gyrokinetic Theory
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Basic Idea of GK Theory

• GK orderings

– small fluctuation:  	~  	~  	~	
– low frequency:  	~	
– anisotropic fluctuation: ∥ 	~	,  	~	1
– mild non-uniformity in plasma profiles, background 

magnetic field etc.:  	~	 Free energy to drive turbulence
(GK with strong gradient, T.S. Hahm ‘09)

Fast MHD waves and cyclotron waves are 
ruled out (high freq. GK, H. Qin ’99)

T.S. Hahm, Phys. Fluids 31, 2670 (1988)
A. Brizard, T.S. Hahm, Rev. Mod. Phys. 79, 421(2007)
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Basic Idea of GK Theory (cont’d)

• Guiding center transformation
particle space ⃗, ⃗ ↔  guiding(gyro) center space , ∥, , 

+

 ⃗
⃗

: gyrophase-angle → average out = ⃗ − ⃗,  ⃗ =  × ,  Ω =  ∥ =  ⋅ ⃗, 	 = ⃗ = ∥ + ̂
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Basic Idea of GK Theory (cont’d)
• Schematics of guiding center transformations in GK simulation

ü Solve Vlasov equation in guiding center space and evaluate ( , )
ü Transform ( , ) to particle space

ü Solve Maxwell equations to obtain EM fields

ü Transform EM fields to guiding center space

Particle Space Guiding Center Space

Vlasov Equation (6D)

Maxwell Equation (3D)

Vlasov Equation (5D)

Maxwell Equation (3D)
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Gyrokinetic Vlasov Equation

• Transform original 6D Vlasov equation in particle space into 

guiding center space

• Take gyro-angle average to remove 
→ reduction to 5D  (̅, ∥, , ), large time step Δ > 1/Ω
̅ + ∥∗ + 	 ×  +   × 〈〉 ⋅ ̅+  −∗ ⋅  − ∗ ⋅   − 1  ∥ ̅∥ = 0

 =  − ∥ ∥∗ =  + ∥  ×  ⋅ 〈	⋅	〉 = gyro-phase 
averaged fluctuations



11

• Solved in particle space i.e. no guiding center transformation

• Evaluation of ,  in particle space è pull-back transformation 

of sources (i.e. from guiding center space to particle space) is 

needed:  ̅ , ∥, ,  	→ 		 (⃗, ⃗, )

Gyrokinetic Maxwell Equation

− 	⃗,  = 4(⃗, ) −∥(	⃗, ) = 4 (⃗, )

(⃗, ) = ∫ ∗∥ 	  + ⃗ − ⃗ ̅ +  ( −  )̅(⃗, ) = ∫ ∗∥ 	  + ⃗ − ⃗ ∥ ̅ +  ( −  ) ̅
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• We need to solve to the following forms:

• If we take long wave length limit, we can simplify these as

Gyrokinetic Maxwell Equation (cont’d)

 	⃗,  = −4   −	⋅⃗ 	1 − Γ  ( − 1 ∥)∥ 	⃗,  = −4  ̅ −	⋅⃗ 	 1 − Γ  ( −  Π∥)

 ≡ ∫ ∗∥ 	  + ⃗ − ⃗ 	̅̅ ≡ ∫ ∗∥ 	∥  + ⃗ − ⃗ 	̅
(long wave length limit → b =   ≪ 1, Γ  ≈ 1 −  	, Γ  ≈ 1)
−(1 +  ) 	⃗,  = 4−∥ = 4 ̅

(A. Brizard, T.S. Hahm, Rev. Mod. Phys. 2007)
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Simple Minded View on GK Theory
• Gyrokinetic description of magnetized plasmas
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Elementary Plasma Physics
• ⃗ ×  drift motion of charged particle 

è drift motion of gyration center in ⃗ ×  direction

⃗

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è GK equations of motion are nothing but a combination of familiar drift 

motions ensuring phase space volume conservation and making them 

Hamiltonian flows

ExB drift

mirror force

Parallel motion along perturbed magnetic field

Grad-B + Curvature drift

Parallel E-field ∗ =  + ∥  ×  ⋅ ≈  + ∥ 	 × ∇/
Low beta
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Simple Minded View on GK Theory
• What is gyro-average 〈 〉 and how to compute it?

→ Gyro-averaged field is nothing but field felt by “charged ring”
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or in Fourier space (as is often done in continuum codes)
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Simple Minded View on GK Theory

• Charged rings have stronger shielding effect than point particles−(1 +  ) 	⃗,  = 4
ü Additional shielding by polarization charges carried by charged rings
ü Significantly enhanced as compared to Debye shielding

Charge density from charged rings

• Charged rings have no response to parallel direction i.e. no such 
thing as polarization current in parallel direction−∥ = 4 ̅ Parallel current carried by charged rings
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• Gyrokinetic equation for guiding center distribution

Simple Minded View on GK Theory
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Hyperbolic + Elliptic PDEs

- Standard numerical techniques 
can be employed

- Issue is mainly problem size 
and computational cost

- Blind choice of scheme can 
easily end up with practically 
unsolvable one

• Gyrokinetic Maxwell Equation
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Where dose it stand?

• Where does it stand?

Boltzmann

Gyrokinetic

Gyrofluid

MHD

- Reduction of GK eqs to fluid moments (3D)
- Sophisticated closure to model 
wave-particle interaction and FLR effects

-  ≪ 1, reduction to single fluid model
- Simple closures

- Strongly magnetized plasma (e.g. tokamak),
low frequency fluctuations  ω << Ωi

- Reduction from 6D to 5D kinetic equation
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Where dose it stand?

• Alfvenic turbulence: 	~	∥
• GS scaling of 

anisotropy: ∥ ∝ /
è  < Ω for  → 1
è regime of gyrokinetic

G.G. Howes et al.,  ApJ’06,  PRL’08



21 D.S. Ryu, WCI-CNU workshop 2010
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Merits and Limitations

• Applicable to small-scale (gyro-radius) turbulence in strongly 

magnetized plasmas è solar winds, corona, ISM, intracluster etc.

• Describe kinetic cascade in 5D phase space (both space and 

velocity) è collisionless Landau damping

• Compressional component can be included

• Recover various MHD results for some appropriate limiting cases

• Limitation: fast MHD waves, cyclotron resonance are ruled out 

(extension to high frequency gyrokinetic theory, H. Qin, PoP’99)
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Issues in Gyrokinetic 
Simulation
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Problem Size and Parallelization
• Though reduced to 5D, problem size is still challenging!

• Complexity of equations è careful choice of numerical 

scheme is required i.e. well balanced between good 

numerical property and simplicity for easy implementation 

and parallelization

Number of grids:  ×  ×  × ∥ × ≥ 256 × 256 × 64 × 128 × 32	~	10
Electron-proton mass ratio ~ 1:2000  

è time scale disparity ~ 45
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Phase Space Filamentation

• Collisionless Vlasov equation
– Characteristic equations ⇒ Hamiltonian flow 

– Phase space volume is conserved along the characteristics

– evolution of distribution function with streaming and interactions           

⇒ finer and finer filamentation in phase space down to sub-grid scales

 +   + ∥ ∥ =  − ,  = 0
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Phase Space Filamentation

 

D.K. Jang and D.K. Lee ’12
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Phase Space Filamentation
• Collision becomes important

This process continues until (neglected) collision can catch up.

(Note that neglected collision term becomes important for smaller velocity space scales) =  − ,  = (, )  ,  	~	  ↑  as Δ	 → 0

 
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Phase Space Filamentation
• Issues in numerical simulation

– But sufficient grid resolution all the way down to the collisional scale is 

practically impossible!

– Strong gradients in phase space è source of many numerical troubles

– Careful choice of scheme and/or adding artificial dissipation is needed to 

minimize non-physical behaviors 

 Insufficient resolution
è Oscillation
è Unphysical instabilities

Adding numerical diffusion
è Stabilize simulation
è Artificial heating/cooling
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Numerical Simulation of 
Gyrokinetic Equations
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Particle in Cell (PIC) method (Lagrangian)
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Particle in Cell (PIC) method (Lagrangian)

• Almost same with conventional PIC simulations (“particles” è

“charged rings”)

• All previous numerical methods developed for PIC can be 

employed

• Issue of small scale noise (~ 1/√)

• ~ 2000 particles per cell as rule of thumb

• Explicit scheme, larger time step etc. possible

• Easier to parallelize
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S. Ku and CPES team, ICNSP’11



33

XGC1 full torus simulation of ITG turbulence (S. Ku et al., EPS’12)
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Continuum Method (Eulerian)

Setup grid system for entire phase space (5D) and apply standard

method to solve hyperbolic PDE i.e. FDM, FVM, etc

n
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JIJ
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nn fNMf 11 -+ =

Inversion of “huge matrix”

is usually required
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Continuum Method (Eulerian)

Vlasov simulation of two steam instability  (D.K. Jang and D.K. Lee ’12)
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Continuum Method (Eulerian)
• All advanced schemes developed in hydro communities can be employed

• Some operations are very costly  e.g.  ~∫   
• CFL condition often dictates implicit time integration

• Phase space granulation poses high velocity space resolution

è grid scale dissipation is necessary è poorer conservation than PIC

• Parallelization efficiency is often less than PIC

• Low noise high quality simulation is possible if sufficient resolution is 

provided 

è development of massively parallel supercomputer makes this possible!
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Semi-Lagrangian Scheme
• Invariance of distribution function along characteristics
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• Find   	 at grid point by tracing back characteristic line and interpolating  
• Relatively free from CFL constraint  i.e. larger Δ
• Interpolation on Eulerian grid à greatly reduce discrete particle noise

Δ (, ∥)
(, ∥)
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Numerical Simulation of Gyrokinetic Equation

• What is δf scheme?
– Write distribution function as a sum of known  and 
– Solve only perturbed part  only
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Numerical Simulation of Gyrokinetic Equation

• Why δf scheme?
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• Why not δf scheme?

In collisionless simulation (ν=0), particle weights grow linearly in time
and δf scheme stops to work
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Summary
• Gyrokinetic simulation is a well developed tool to study low 

frequency micro-scale turbulence. Serious validation efforts are 
also ongoing in fusion community.

• With careful examination of parameter regime, it can be applied to 
astrophysical environments such as ISM, intracluster medium etc.
– microscopic turbulence with kinetic processes e.g. collisionless Landau 

damping

– sub-grid transport model for global simulation studies

– stimulate the extension of gyrokinetic model beyond present limit

• Careful choice of numerical scheme is absolutely critical
– beneficial for both communities  to expand present simulation capabilities


