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Deviations from FLRW Models Due to Inhomogeneities

It is generally believed that our universe is very well

described on large scales by a

Friedmann-Lemaitre-Robertson-Walker (FLRW) model.

The FLRW models treat the matter as being

homogeneously distributed. However, on small scales,

extremely large departures of the mass density from

FLRW models are commonly observed, e.g., for the Earth

δρ/ρ ∼ 1030. Thus, at least with regard to the description

of matter, the FLRW models might seem to provide a

very poor description of our universe on small scales.

In 2006, Ishibashi and I used “common sense estimates”

to argue that (a) the deviation of the metric (as opposed



to mass density, which corresponds to second derivatives

of the metric) from an FLRW metric are globally very

small on all scales except in the immediate vicinity of

strong field objects such as black holes and neutron stars,

and (b) the terms in Einstein’s equation that are

nonlinear in the deviation of the metric from a FLRW

metric are negligibly small as compared with the

dominant linear terms in the deviation from a FLRW

metric except in the immediate vicinity of strong field

objects. We then used these common sense estimates

together with the fact that the motion of matter relative

to the rest frame of the cosmic microwave background is

non-relativistic to argue that (1) the large scale structure



of the universe is well described by a FLRW metric

satisfying the usual Einstein’s equation with the averaged

stress-energy of matter, (2) when averaged on scales

sufficiently large that |δρ/ρ| ≪ 1—i.e., scales ≫ 10 Mpc

in the present universe—the deviations from a FLRW

model are well described by ordinary FLRW linear

perturbation theory, and (3) on smaller scales, the

deviations from a FLRW model (or, for that matter, from

Minkowski spacetime) are well described by Newtonian

gravity—except, of course, in the immediate vicinity of

strong field objects.

However, it would certainly be far more satisfactory to

derive conclusions of this sort in a systematic and



mathematically satisfactory way, not merely by making

“common sense estimates”. Furthermore, it would be

useful to know exactly what approximations are needed

for conclusions (1)–(3) to be valid, and how one could go

about systematically improving these approximations.

Most importantly, it is not obvious how to rigorously

justify keeping nonlinear terms in Einstein’s equation on

small scales (as is needed to describe the behavior of

self-gravitating objects like galaxies), but neglecting

them on large (i.e., ≫ 10 Mpc) scales. Specifically, if

nonlinearities are important on small scales, why couldn’t

their cumulative effects produce important corrections to

the large-scale dynamics of the FLRW model itself, as



has been suggested by a number of authors as a possible

way to account for the effects of “dark energy” without

invoking a cosmological constant, a new source of matter,

or a modification of Einstein’s equation?



Averaging Over Inhomogeneities

The main approach that has been taken thus far (by

Buchert and others) is to consider inhomogeneous

models, take spatial averages to define corresponding

FLRW quantities, and derive equations of motion for

these FLRW quantities. Since, in particular, the spatial

average of the square of a quantity does not equal the

square of its spatial average, the effective FLRW

dynamics of an inhomogeneous universe will differ from

that of a homogeneous universe. However, there are a

number of serious difficulties with this approach:

• It is not obvious how to interpret the averaged

quantities in terms of observable quantities. For



example, if the total volume of a spatial region is

found to increase with time, this certainly does not

imply that observers in this region will find that

Hubble’s law appears to be satisfied.

• The notion of averaging is slicing dependent.

Furthermore, in many cases a geodesic slicing is

chosen (corresponding, e.g., to the rest frame of

irrotational dust matter). Such slicings are typically

ill behaved (caustics), leading to spurious effects that

appear to be large.

• The average of tensor quantities over a region in a

non-flat spacetime is intrinsically ill defined.



• The equations for averaged quantities that have been

derived to date are only a partial set of equations,

corresponding only to the “scalar parts” of Einstein’s

equation (the Raychaudhuri equation and

Hamiltonian constraint). Thus, these equations

contain quantities whose evolution is not

determined—so it is difficult to analyze what

dynamical behavior of the averaged quantities is

actually possible.



The Type of Framework We Seek

We seek a framework that allows spacetimes where there

can be significant inhomogeneity and nonlinear dynamics

on small scales, but can describe “average” large-scale

behavior in a mathematically precise manner, with

approximations that are “controlled” in the sense that

they hold with arbitrarily good accuracy in some

appropriate limit. The key elements in this framework

are:

• There is a “background spacetime metric”, g
(0)
ab , that

is supposed to correspond to the metric “averaged”

over small scale inhomogeneities. The difference,

hab ≡ gab − g
(0)
ab , between the actual metric gab and



the background metric is assumed to be “small”.

• Although hab is “small”, spacetime derivatives of hab

are not assumed to be small. In particular, quadratic

products of ∇chab are allowed to be of the same order

as the curvature of g
(0)
ab . This allows nonlinear terms

in hab in Einstein’s equation to affect the dynamics of

the background metric g
(0)
ab .

• No restrictions are placed upon second derivatives of

hab. In particular, if matter is present, we allow

δρ/ρ≫ 1.



How to Make Our Framework Precise

In order to develop a mathematically precise framework,

we wish to consider a one-parameter family of metrics

gab(λ) that has appropriate limiting behavior as λ→ 0.

In our case, we want the “small parameter” λ to be

related to the ratio of the lengthscale associated with the

small-scale inhomogeneities to the curvature lengthscale

of the “background metric” g
(0)
ab ≡ gab(λ = 0).

Example: Ordinary Perturbation Theory: Here the

“small parameter” λ is simply the amplitude of the

deviation, hab, of the metric from the background metric.

Spacetime derivatives of hab are assumed to be

correspondingly small. To implement this in a



mathematically precise way, we consider a one-parameter

family of metrics gab(λ, x) that is jointly smooth in the

parameter λ and the spacetime coordinates x. If gab(λ)

satisfies Einstein’s equation for all λ > 0, then g
(0)
ab also

automatically satisfies Einstein’s equation. Define the

nth order perturbation g
(n)
ab ≡ (∂ngab/∂λ

n)|λ=0. It

satisfies an equation obtained by taking the nth partial

derivative with respect to λ at λ = 0 of Einstein’s

equation for gab(λ, x).

Our Framework: As in ordinary perturbation theory we

want to consider a one-parameter family gab(λ) that

approaches a “background metric” g
(0)
ab as λ→ 0.

However, we do not want spacetime derivatives of gab(λ)



to approach corresponding derivatives of g
(0)
ab as λ→ 0.

Can this be made mathematically consistent?

Yes! The issues we face are very similar to the issues

arising when one attempts to treat the self-gravitating

effects of short-wavelength gravitational radiation. We

will adopt a version of Burnett’s formulation of the

“shortwave approximation,” which we generalize to allow

for the presence of a nonvanishing matter stress-energy

tensor Tab.



Weak Limits

We want to consider a limit in which hab ≡ gab(λ) − g
(0)
ab

becomes small as λ→ 0, but ∇chab does not become

small. A prototype example of the kind of behavior we

want to allow is

h(x) = λ sin(x/λ)

Then h→ 0 as λ→ 0 but ∇h ∼ cos(x/λ) and

(∇h)2 ∼ cos2(x/λ) do not approach limits in the ordinary

(i.e., uniform or pointwise) sense. However, they do

approach limits in the weak sense:

Definition: Let Aa1...an
(λ) be a one-parameter family of

tensor fields defined for λ > 0. We say that Aa1...an
(λ)



converges weakly to Ba1...an
as λ→ 0 if for all smooth

fa1...an of compact support, we have

lim
λ→0

∫

fa1...anAa1...an
(λ) =

∫

fa1...anBa1...an
.

Roughly speaking, the weak limit performs a local

spacetime average of Aa1...an
(λ) before letting λ→ 0.

In our above example, it is easy to see that cos(x/λ)

converges weakly to zero, wheres (∇h)2 ∼ cos2(x/λ)

converges weakly to 1/2. As we shall see, terms involving

quadratic products of ∇chab will act as an “effective

gravitational stress-energy tensor.”



Our Assumptions

Let ∇a denote an arbitrary fixed (i.e., λ-independent)

derivative operator on the spacetime manifold M . For

convenience in stating these conditions, we choose an

arbitrary Riemannian metric eab on M and for any tensor

field ta1...an
on M we define

|ta1...an
|2 = ea1b1 . . . eanbnta1...an

tb1...bn
.

(i) For all λ > 0, we have

Gab(g(λ)) + Λgab(λ) = 8πTab(λ) ,

where Tab(λ) satisfies the weak energy condition,

i.e., for all λ > 0 we have Tab(λ)ta(λ)tb(λ) ≥ 0 for all

vectors ta(λ) that are timelike with respect to gab(λ).



(ii) There exists a smooth positive function C1(x) on M

such that

|hab(λ, x)| ≤ λC1(x) ,

where hab(λ, x) ≡ gab(λ, x) − gab(0, x).

(iii) There exists a smooth positive function C2(x) on M

such that

|∇mhab(λ, x)| ≤ C2(x) .

(iv) There exists a smooth tensor field µmnabcd on M such

that

wlimλ→0 [∇mhab(λ)∇nhcd(λ)] = µmnabcd ,

where “wlim” denotes the weak limit.



It follows immediately that µmn(ab)(cd) = µmnabcd and

µmnabcd = µnmcdab, and it is not difficult to show that

µ(mn)abcd = µmnabcd. It also is not difficult to see that if

gab(λ) satisfies the above conditions for any choice of ∇a

and eab, then it satisfies these conditions for all choices of

∇a and eab. In our calculations, it will be convenient to

choose ∇a to be the derivative operator associated with

the background metric g
(0)
ab ≡ gab(0), and in the following,

we shall make this choice. We shall also raise and lower

indices with g
(0)
ab .



Einstein’s Equation

Rab(g
(0)) −

1

2
gab(λ)gcd(λ)Rcd(g

(0)) + Λgab(λ)

= 8πTab(λ) + 2∇[aC
m

m]b − 2Cn
b[aC

m
m]n

−gab(λ)gcd(λ)∇[cC
m

m]d + gab(λ)gcd(λ)Cn
d[cC

m
m]n

where

Cc
ab =

1

2
gcd(λ) {∇agbd(λ) + ∇bgad(λ) −∇dgab(λ)}

Take the weak limit as λ→ 0 of both sides of Einstein’s

equation. Get

Gab(g
(0)) + Λg

(0)
ab = 8πT

(0)
ab + 8πt

(0)
ab ,



where T
(0)
ab ≡ wlimλ→0Tab(λ) (which necessarily exists)

and

8πt
(0)
ab =

1

8
g

(0)
ab {−µ c mn

c mn − µ c m n
c m n + 2µ m cn

mn c }

+
1

2
µ n m

mn ab −
1

2
µ m n

m nab +
1

4
µ mn

abmn

−
1

2
µ

m n
m(ab) n +

3

4
µ m n

m n ab −
1

2
µ mn

mn ab .

This expression is gauge invariant.



Tracelessness of t
(0)
ab

Multiply Einstein’s equation by hef (λ) and take the weak

limit as λ→ 0. Obtain

α m
amb ef = 4πwlimλ→0hef (λ)[Tab(λ)

−
1

2
gab(λ)gcd(λ)Tcd(λ)] .

where αabcdef ≡ µ[c|[ab]|d]ef . The right side can be proven

to vanish if Tab(λ) satisfies the weak energy condition.

From this, we immediately obtain

t(0)aa = 0 .



Positivity of Effective Gravitational Energy Density

Let ta be timelike with respect to g
(0)
ab . We have

8πt
(0)
ab t

atb =
1

4

{

µ i jk
i jk − 2µ ijk

jik + 2µ ijk
jki − µ i j k

i j k

}

.

where only spatial indices (orthogonal to ta) appear on

the right side. Let P ∈M , choose Riemannian normal

coordinates x about P , and let

ψab(δ, λ) ≡ f δ
Phab(λ) .

where f δ
P (x) is sharply peaked about P and its square

approaches a δ-function as δ → 0. Then

µµναβγρ(P ) = lim
δ→0

lim
λ→0

∫

∂µψαβ∂νψγρd
4x .



We obtain

t
(0)
00 (P ) =

1

32π
lim
δ→0

lim
λ→0

∫

d4x[∂iψjk∂
iψjk − 2∂jψ

i
k ∂iψ

jk

+ 2∂jψ
i

i ∂kψ
jk − ∂iψ

j
j ∂

iψ k
k ] .

Now take the Fourier transform of ψjk and decompose it

into its scalar, vector, and tensor parts

ψ̂ij(t,k) = σ̂(t,k)kikj + 2φ̂qij + 2k(iẑj)(t,k) + ŝij(t,k) .

where kiẑi = 0 = kiŝij, and ŝi
i = 0 and qij is the

projection orthogonal to ki of the Euclidean metric on

Fourier transform space. The corresponding formula for



t
(0)
00 is

t
(0)
00 (P ) =

1

32π
lim
δ→0

lim
λ→0

∫

dtd3
k

{

kik
iŝjkŝjk − 8kik

iφ̂φ̂
}

,

Thus, the “tensor part,” ŝij, of ψ̂ij (“gravitational

radiation”) contributes positive effective energy density,

while the scalar part contributes negative energy density.

From Einstein’s equation, one can show that φ satisfies a

Poisson-like equation. Its contribution to t
(0)
00 corresponds

to (twice) the Newtonian formula for gravitational

potential energy. By a fairly lengthy argument, this

negative contribution to t
(0)
00 can be shown to vanish

provided that Tab(λ) satisfies the weak energy condition.



Thus, t
(0)
ab is traceless and satisfies the weak energy

condition. It cannot provide any effects that mimic “dark

energy.”



Cosmological Perturbation Theory

The ordinary (uniform or pointwise) limit of

hab/λ = [gab(λ) − g
(0)
ab ]/λ cannot exist for the

one-parameter families of metrics of interest to us.

However, its weak limit can exist, and, if it does, the

resulting quantity

γ
(L)
ab ≡ wlimλ→0

hab(λ)

λ

can be interpreted as the “long wavelength part” of the

linear order in λ deviation of gab(λ) from g
(0)
ab . We refer to

h
(S)
ab (λ) ≡ hab(λ) − λγ

(L)
ab ,

as the “short wavelength part” of the deviation of the



metric from g
(0)
ab . If we divide Einstein’s equation by λ,

take the weak limit as λ→ 0, and if we assume that weak

limits of various quantities such as

µ
(1)
abcdef = wlimλ→0

1

λ

[

∇ah
(S)
cd (λ)∇bh

(S)
ef (λ) − µabcdef

]

exist, then we obtain a linear equation for γ
(L)
ab with a

source term of the form

G
(1)
ab (g(0), γ(L))+Λγ

(L)
ab + fab(g

(0), µγ(L)) = 8πT
(1)
ab +8πt

(1)
ab ,

where fab(g
(0), µγ(L)) is linear in γ

(L)
gh and is proportional

to µabcdef ,

T
(1)
ab ≡ wlimλ→0

Tab(λ) − T
(0)
ab

λ
,



and one can write down an explicit formula for t
(1)
ab in

terms of quantities like µ
(1)
abcdef . It would take several

slides to write out the explicit formula for this additional

effective source t
(1)
ab in the general case.



Newtonian Cosmology

It is well known that the equations for a uniformly

expanding pressureless fluid (“dust”) in Newtonian

gravity are identical to the dynamical equations for a

dust filled FLRW universe in general relativity. The

linearized perturbations off of a Newtonian cosmology

also obey exactly the same equations as certain

corresponding scalar and vector gauge-invariant variables

of linearized perturbations of a spatially flat FLRW dust

cosmology. These statements remain true in the presence

of a cosmological constant, Λ.



How good a description of our universe does Newtonian

gravity provide, and what are the leading order general

relativistic corrections?

This question can be addressed and answered within the

context of our framework.



Newtonian Orders

Let ψN denote the difference between the actual

Newtonian potential and that of a homogeneous, isotropic

background solution, let vN denote the deviation of

velocity from the Hubble flow, and write δN ≡ δρN/ρN .

In terms of a “small parameter” ǫ, assign the following

orders to quantities in a Newtonian cosmology: ψN ∼ ǫ,

vN ∼ ǫ1/2, δN ∼ 1/ǫ. Spatial derivatives count as ∼ 1/ǫ

and time derivatives count as ∼ 1/ǫ1/2 (at small scales;

all derivatives are O(1) at large scales).

Convert a Newtonian cosmology to a general relativistic

cosmology using the following “dictionary” that works

exactly at the linearized level:



ds2 = a2(τ)[−(1 + 2A)dτ 2 − 2Bidx
idτ +

+((1 + 2HL)δij + hij) dx
idxj] ,

with

A = −HL = ψN ,

vi = vi
N ,

δ = δN −
3

4πρ0a2

[

(

ȧ

a

)2

ψN +
ȧ

a
ψ̇N

]

.

and a Poisson equation for Bi (and hij = 0).



Solving Einstein’s Equation

If one starts with a Newtonian cosmological solution,

uses the above dictionary, and plugs into Einstein’s

equation, one finds that Einstein’s equation fails to hold

to O(1) at small scales and to O(ǫ) at large scales.

However, one can systematically correct the dictionary

(where the corrections are obtained by solving Poisson

equations) so as to obtain a solution at O(1) at small

scales. These are cosmological versions of

post-Newtonian corrections and should produce

negligible (O(ǫ2)) corrections to the metric.

The further corrections to the dictionary needed to solve

Einstein’s equation to O(ǫ) at large scales can be



obtained from our cosmological perturbation theory. We

find that these corrections are negligible except for the

purely homogeneous part of the scalar perturbation: It

converts the background FLRW cosmology with mass

density ρ0 to an FLRW cosmology with mass density and

stress corrected by precisely the Newtonian gravitational

energy and stresses and the kinetic energy and stresses.

This is the dominant correction to large scale

cosmological dynamics produced by small scale

inhomogeneities.



Summary

We have developed a new framework/approximation

scheme, where, in essence, the “small parameter” is the

ratio of the lengthscale of the nonlinearities to the

lengthscale of the background curvature. This framework

allows δρ/ρ≫ 1 on scales ≪ RH and should be

applicable to our universe. Our main results are:

• Provided only that the matter always has locally

positive energy, the only way small scale

inhomogeneities can have a significant (“0th order”)

effect on large scale FLRW dynamics in our

framework is through the presence of gravitational

radiation. In particular, small scale matter



inhomogeneities can never mimic the effects of dark

energy.

• Assuming that the gravitational radiation content of

our universe is negligible, at long wavelengths, the

deviation from an FLRW model (at “1st order”)

should be well described by a quantity γ
(L)
ab , which

satisfies the ordinary linearized Einstein equation,

but has an additional “effective stress-energy source”

due to the short wavelength inhomogeneities.

• If the background FLRW model is spatially flat, if

the matter content is pressureless, and if the velocity

of matter relative to the Hubble flow is ≪ c, and if

the homogeneity scale is ≪ RH , then Newtonian



gravity should provide an excellent description of

gravitational phenomena on all scales, including

scales larger than the Hubble radius! A precise

“dictionary” can be given for translating a

Newtonian cosmology into a general relativistic

cosmology, which includes post-Newtonian

corrections on small scales and the corrections in γ
(L)
ab

at large scales. The dominant correction to

Newtonian gravity on large scales is merely an

effective “renormalization” of the mass density from

“proper mass density” to “ADM mass density.”



These results go a long ways toward providing a

mathematically consistent justification for the

assumptions usually made in cosmology, and provide a

framework for improving the approximations.


