



#### Gravitational-Wave Astronomy Current Status and Future Prospects

Patrick Brady

Spacetime interval can be written as

$$ds^2 = (\eta_{\alpha\beta} + h_{\alpha\beta})dx^{\alpha}dx^{\beta}$$

where  $\eta_{\alpha\beta}$  is the Minkowski metric and  $h_{\alpha\beta}$  is a metric perturbation For weak gravitational fields, the leading order solution is

$$h_{ij} = \frac{2G}{c^4} \frac{1}{r} \frac{d^2 Q_{ij}}{dt^2} \sim \frac{G}{c^4} \frac{mv^2}{r}$$

Mass Quadrupole  

$$Q_{ij} \approx \int \rho(x_i x_j - \frac{1}{3}\delta_{ij} x^2) d^3 x$$

Spacetime interval can be written as

$$ds^2 = (\eta_{\alpha\beta} + h_{\alpha\beta})dx^{\alpha}dx^{\beta}$$

where  $\eta_{\alpha\beta}$  is the Minkowski metric and  $h_{\alpha\beta}$  is a metric perturbation For weak gravitational fields, the leading order solution is

$$h_{ij} = \frac{2G}{c^4} \frac{1}{r} \frac{d^2 Q_{ij}}{dt^2} \sim \frac{Gmr^2}{c^4}$$

mass of the quadrupole variation

Mass Quadrupole  

$$Q_{ij} \approx \int \rho(x_i x_j - \frac{1}{3}\delta_{ij} x^2) d^3 x$$

Spacetime interval can be written as

$$ds^2 = (\eta_{\alpha\beta} + h_{\alpha\beta})dx^{\alpha}dx^{\beta}$$

where  $\eta_{\alpha\beta}$  is the Minkowski metric and  $h_{\alpha\beta}$  is a metric perturbation For weak gravitational fields, the leading order solution is

$$h_{ij} = \frac{2G}{c^4} \frac{1}{r} \frac{d^2 Q_{ij}}{dt^2} \sim \frac{G}{c^4} \frac{mv^4}{r}$$

Mass Quadrupole  $Q_{ij} \approx \int \rho(x_i x_j - \frac{1}{3}\delta_{ij} x^2) d^3 x$ 

# velocity of the quadrupole variation

Spacetime interval can be written as

$$ds^2 = (\eta_{\alpha\beta} + h_{\alpha\beta})dx^{\alpha}dx^{\beta}$$

where  $\eta_{\alpha\beta}$  is the Minkowski metric and  $h_{\alpha\beta}$  is a metric perturbation For weak gravitational fields, the leading order solution is

$$h_{ij} = \frac{2G}{c^4} \frac{1}{r} \frac{d^2 Q_{ij}}{dt^2} \sim \frac{G}{c^4} \frac{mv^2}{r}$$

Mass Quadrupole  

$$Q_{ij} \approx \int \rho(x_i x_j - \frac{1}{3}\delta_{ij} x^2) d^3 x$$

### Physical Effects of the Waves

- As gravitational waves pass, they change the distance between neighboring bodies
- GR predicts two polarizations
- Fractional change in distance is the strain given by h =  $\delta L / L$



### Physical Effects of the Waves

- As gravitational waves pass, they change the distance between neighboring bodies
- GR predicts two polarizations



Animations: Warren Anderson

• Fractional change in distance is the strain given by h =  $\delta L / L$ 



### Schematic Detector

As gravitational waves pass, they change the distance between neighboring bodies...



... causing the interference pattern to change at the photodiode

# Global Network of Gravitational-wave Detectors GE600



LIGO Livingston



Virgo

# Global Network of Gravitational-wave Detectors GE600



LIGO Livingston



Virgo





### Space-Based Detectors



#### **DECIGO & LISA**

Wednesday, December 5, 12

### Pulsar Timing



#### International Pulsar Timing Array (IPTA) includes NANOGrav, EPTA, ....

Wednesday, December 5, 12

#### Gravitational-Wave Spectrum



### Motivation

- To test relativistic gravity and to develop gravitational wave detection as an astronomical probe
- Anticipated gravitational-wave signals
  - Transient signals: compact binary coalescence, supernovae, cosmic string kinks, black-hole ringdown.
  - Continuous signals: spinning neutron stars in isolation & in binaries.
  - Stochastic signals from cosmological sources.
  - Serendipitous signals: unanticipated sources in all these categories
- Gravitational waves carry information about the structure and dynamics of the sources



Wednesday, December 5, 12

### LIGO & Virgo Observing Runs



## S5/VSRI Sensitivity



Wednesday, December 5, 12

### **Compact Binaries**

- Pairs of black holes, neutron stars, or a black hole and neutron star
- As they orbit one another, they emit gravitational waves causing the objects to get closer together, eventually merging

Credit: Dana Berry, NASA



 $4GM v^2$ 



Wednesday, December 5, 12

#### S6/VSR2 Compact Binary Foreground

#### (Includes blind injection signal)



#### S6/VSR2 Compact Binary Foreground

#### (Includes blind injection signal)







### Searches for compact binaries

#### No plausible gravitational waves found

- Reasonable rate estimate for binary neutron stars is ~ 1x10<sup>-6</sup> / yr / Mpc<sup>3</sup>
- Neutron star black hole rates are ~3x10<sup>-8</sup> / yr / Mpc<sup>3</sup>
- Black hole binaries are ~ 5x10<sup>-9</sup> / yr / Mpc<sup>3</sup>

LIGO-Virgo, Phys Rev D85 (2012) 082002 [arXiv:1111.7314]



- Signals last as long as, or longer than, the observation time
- Known radio pulsars could also emit gravitational waves
- Unknown radio pulsars that are not beamed toward earth
- Signal strength is given by







- Signals last as long as, or longer than, the observation time
- Known radio pulsars could also emit gravitational waves
- Unknown radio pulsars that are not beamed toward earth
- Signal strength is given by

 $16\pi^{2}$ 









- Signals last as long as, or longer than, the observation time
- Known radio pulsars could also emit gravitational waves
- Unknown radio pulsars that are not beamed toward earth
- Signal strength is given by







- Signals last as long as, or longer than, the observation time
- Known radio pulsars could also emit gravitational waves
- Unknown radio pulsars that are not beamed toward earth
- Signal strength is given by







- Signals last as long as, or longer than, the observation time
- Known radio pulsars could also emit gravitational waves
- Unknown radio pulsars that are not beamed toward earth
- Signal strength is given by







#### Searches for continuous waves

#### No plausible gravitational waves found

- Strength of gravitational waves depends on gravitational ellipticity
- Radio observations of Crab pulsar spindown constrain maximum gravitational ellipticity around 10<sup>-3</sup>
- LIGO-Virgo non-detection of gravitational waves constrains gravitational ellipticity of Crab at ~10<sup>-4</sup>

#### 95% Upper limit on Known Pulsars



LIGO-Virgo, "Searches for gravitational waves from known pulsars with S5 LIGO data," Astrophys. J. 713 (2010) 671 [arXiv:0909.3583]

### GW Astronomy

Trying to add a soundtrack to astronomical events

18-70 k+V

0.3

0.4



- Soft-gamma Repeaters. LSC, Phys. Rev. D 76 (2007) 062003 [astro-ph/ 0703419]; Astrophys. J. 701 (2009) L68-L74. [arXiv:0905.0005]
- Gamma-ray Bursts. LSC, Phys. Rev. D 77 (2008) 062004 [arXiv:0709.0766]; Astrophys. J. 681 (2008) 1419 [arXiv:0711.1163].
- Gamma-ray Bursts. LIGO-Virgo, Astrophys. J. 715 (2010) 1438 [arXiv: 0908.3824]; Astrophys. J. 715 (2010) 1453 [arXiv:1001.0165]; Astrophys. J. 760 (2012) 12 [arXiv:1205.2216]

### GW Astronomy

Trying to add a soundtrack to astronomical events

18-70 k+\

0.3



- Soft-gamma Repeaters. LSC, Phys. Rev. D 76 (2007) 062003 [astro-ph/ 0703419]; Astrophys. J. 701 (2009) L68-L74. [arXiv:0905.0005]
- Gamma-ray Bursts. LSC, Phys. Rev. D 77 (2008) 062004 [arXiv:0709.0766]; Astrophys. J. 681 (2008) 1419 [arXiv:0711.1163].
- Gamma-ray Bursts. LIGO-Virgo, Astrophys. J. 715 (2010) 1438 [arXiv: 0908.3824]; Astrophys. J. 715 (2010) 1453 [arXiv:1001.0165]; Astrophys. J. 760 (2012) 12 [arXiv:1205.2216]

## Example: GRB 070201



• Short gamma-ray burst

 Interplanetary Network error box included M<sub>31</sub> at ~700 kpc!

 Ruled out compact binary progenitor in M31, but could not rule out SGR.

# Example: GRB 070201



Short gamma-ray burst

 Interplanetary Network error box included M<sub>31</sub> at ~700 kpc!



• Ruled out compact binary progenitor in M31, but could not rule out SGR.

LSC. "Implications for the Origin of GRB 070201 from LIGO Observations", Ap. J., 681:1419–1430 (2008). <u>arXiv:0711.1163</u>

#### Connecting GW and EM observations



# LIGO-Virgo partners for the S6/VSR2/VSR3 science runs



#### Connecting GW and EM observations



Wednesday, December 5, 12

# Sky Maps





# Sky Maps

#### No plausible gravitational waves found





# Sky Maps

#### No plausible gravitational waves found

#### Analysis of EM data forthcoming







### Looking forward to 2016



- Advanced LIGO
  - project in full swing
  - acceptance 2014/15
- I0 x Initial LIGO
- 1000 x more sources
  - 40 BNS per year