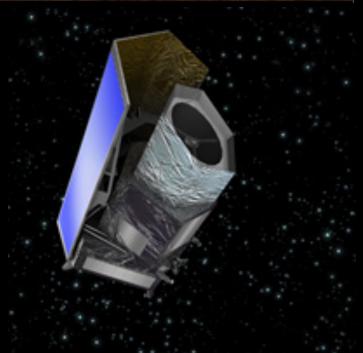


GENERAL RELATIVITY IN GALAXY SURVEYS

Kyoto, December 2012

UNIVERSITY of the WESTERN CAPE



Pioneering paper:

Mon. Not. R. astr. Soc. (1987) 228, 653-669

The magnitude-redshift relation in a perturbed Friedmann universe

Misao Sasaki Research Institute for Theoretical Physics, Hiroshima University, Takehara, Hiroshima 725, Japan

$$\frac{\Delta d_{\rm L}(z,\,\gamma^{i})}{d_{\rm L}(z)} = \frac{1}{\lambda_{\rm s}} \int_{0}^{\lambda_{\rm s}} d\lambda \left[(\lambda - \lambda_{\rm s}) \lambda \Delta^{(3)} \Psi + 2(\Psi - \Psi_{0}) \right] + \frac{1}{2} \left(\frac{\eta_{\rm 0}}{\lambda_{\rm s}} - 3 \right) (\Psi_{\rm s} - \Psi_{\rm 0}) + \frac{1}{6} \left(\frac{\eta_{\rm 0}}{\lambda_{\rm s}} - 3 \right) [\eta_{\rm s}(\psi_{\rm h}\gamma^{i})_{\rm s} - \eta_{\rm 0}(\psi_{\rm h}\gamma^{i})_{\rm 0}] - \frac{1}{3} \eta_{\rm 0}(\psi_{\rm h}\gamma^{i})_{\rm 0} + \Psi_{\rm 0} + \frac{3}{\eta_{\rm 0}} \delta_{*} \eta_{\rm 0}$$

1106.3999 (PRD)

Disentangling non-Gaussianity, bias and GR effects in the galaxy distribution

Marco Bruni¹, Robert Crittenden¹, Kazuya Koyama¹, Roy Maartens^{2,1}, Cyril Pitrou¹, David Wands¹

1205.5221 (JCAP)

Beyond the plane-parallel and Newtonian approach: Wide-angle redshift distortions and convergence in general relativity

Daniele Bertacca^a, Roy Maartens^{a,b}, Alvise Raccanelli^{c,d}, Chris Clarkson^e

1206.0732

Relativistic corrections and non-Gaussianity in radio continuum surveys

Roy Maartens^{1,2}, Gong-Bo Zhao^{2,3}, David Bacon², Kazuya Koyama², Alvise Raccanelli^{4,5}

1209.3142

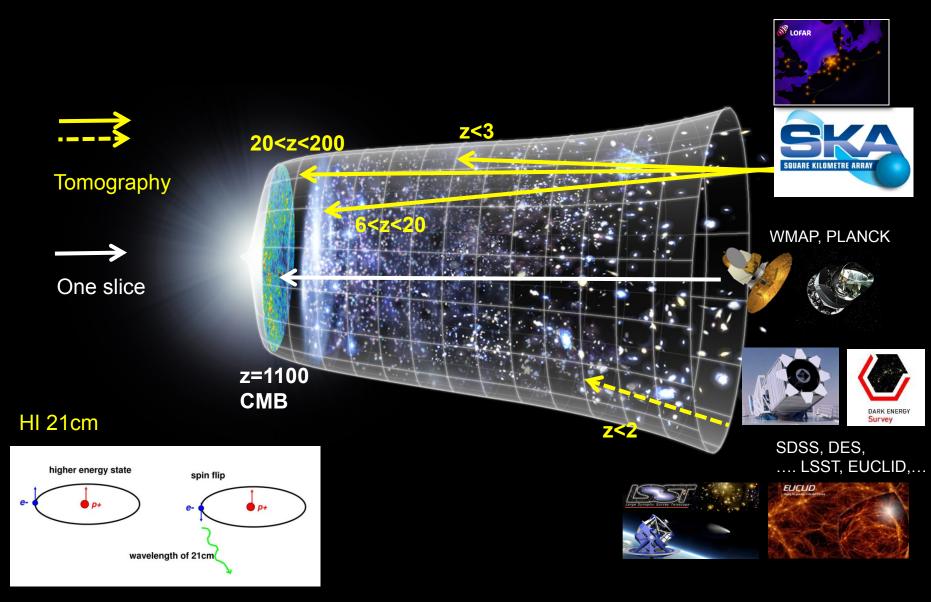
Anti-lensing: the bright side of voids

Krzysztof Bolejko¹, Chris Clarkson², Roy Maartens^{3,4}, David Bacon³, Nikolai Meures⁴ and Emma Beynon⁴

The next frontier of cosmology

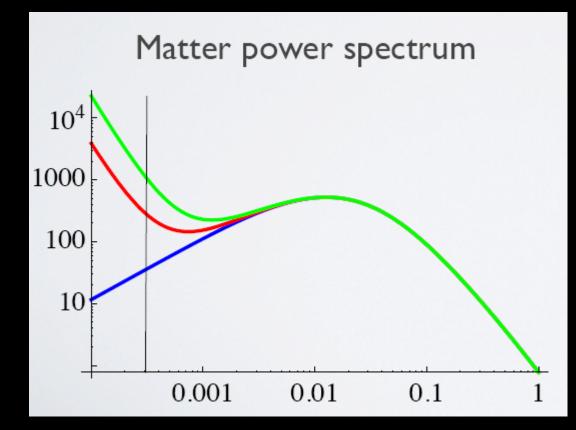
Large-volume surveys of the matter distribution

- * to maintain 'precision cosmology' on the largest scales (which are linear):
 - precision constraints on model parameters
 - tests of Dark Energy/ Modified Gravity models
- * to extract the primordial non-Gaussianity (better than CMB?)
- * to test General Relativity itself on the largest scales



GR effects on the power spectrum

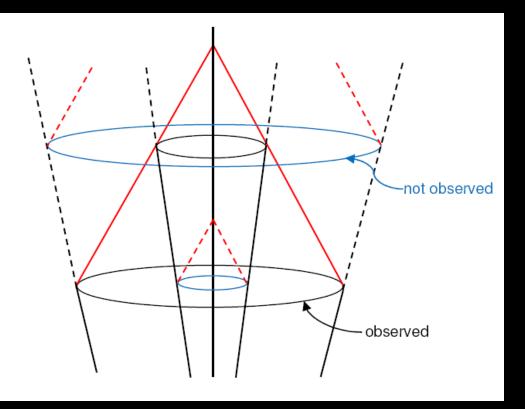
- On scales near and above the Hubble scale, H^{-1} , different gauges for δ give different answers.
- Gauge-invariance does not solve the problem δ^{GI} defined on constant time-slices is not unique.



flat-slicing longitudinal gauge comoving gauge

$$H^{-1}(z) = H_0 \Big[\Omega_m (1+z)^3 + \Omega_\Lambda \Big]^{-1/2}$$

- We observe on the past lightcone, not t = const.
- We must use the observed Δ :
 - * it is unique
 - * it is automatically gauge-invariant
- GR effects: redshift, lensing and volume distortions



 δ , *P*(*k*) defined on *t* = const

 Δ , C_{ι} defined on past lightcone

Observed number N(n,z) – in observed direction n and at observed redshift z.

Define the observed galaxy number overdensity:

$$\Delta(\mathbf{n},z) = rac{N(\mathbf{n},z) - \langle N
angle(z)}{\langle N
angle(z)}$$

 $ho({f n},z)$ =

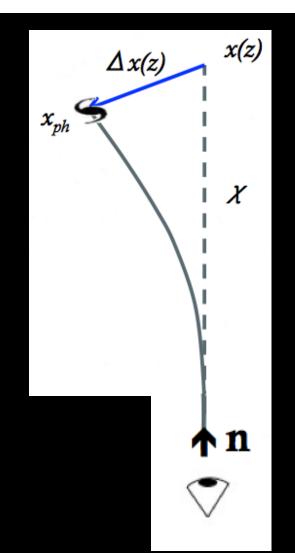
$$=rac{N(\mathbf{n},z)}{V(\mathbf{n},z)}$$
 and $rac{z=ar{z}+\delta z}{V(z,\mathbf{n})=ar{V}(ar{z})+\delta V(z,\mathbf{n})}$

lead to

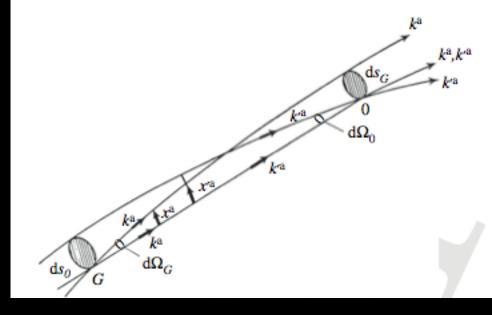
$$\Delta(\mathbf{n},z) = \delta(\mathbf{n},z) - 3rac{\delta z}{1+ar z} + rac{\delta V(\mathbf{n},z)}{V(z)}$$

Now compute perturbed geodesics and volume element:

$$ds^2 = a(\eta)^2 \Big[-(1+2\Phi)d\eta^2 + (1-2\Psi)dx^2 \Big]$$
. longitudinal gauge



$$(\delta\theta, \,\delta\varphi) = (\theta_s - \theta_o, \,\varphi_s - \varphi_o)$$
$$\frac{\delta z}{1 + \overline{z}} = \mathbf{n} \cdot \mathbf{v} - \Phi - \int^{\eta_o} d\eta (\Phi' + \Psi')$$

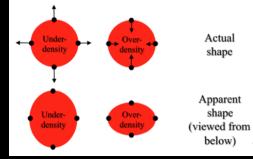


The result is

$$\Delta = \Delta^{\text{std}} + \Delta^{\text{GRcorr}}$$

where

$$\Delta^{\mathrm{std}} = \delta - rac{1}{\mathcal{H}} oldsymbol{n} \cdot rac{\partial oldsymbol{v}}{\partial \chi} + (5s-2)\kappa,$$



lensing convergence

$$\kappa = -rac{1}{2}
abla_{m{n}}^2 \int_{\eta_{
m o}}^{\eta} d ilde{\eta} \ rac{(ilde{\eta}-\eta)}{(\eta_{
m o}-\eta)(\eta_{
m o}- ilde{\eta})} (\Phi+\Psi).$$

$$s \equiv rac{\partial \log_{10} N(z, m < m_*)}{\partial m_*}$$

and....

The GR correction term is

$$\Delta^{\text{GR corr}} = (A+1)\Phi + (5s-2)\Psi + \frac{1}{\mathcal{H}}\Psi'$$

$$+ A \int^{\eta_{o}} d\eta(\Phi' + \Psi') + \frac{(2-5s)}{\chi} \int^{\eta_{o}} d\eta(\Phi + \Psi)$$

$$- A \mathbf{n} \cdot \mathbf{v},$$
with
$$A \equiv \frac{\mathcal{H}'}{\mathcal{H}^{2}} + \frac{2-5s}{\mathcal{H}\chi} + 5s.$$
(Yoo, Fitzpatrick, Zaldarriaga 2009; Yoo 2010)
(Bonvin, Durrer 2011; Challinor, Lewis 2011)
$$\Delta = \Delta^{\text{std}} + \Delta^{\text{GR corr}}$$

The GR effects can become significant at higher z and then at smaller scales – since H^{-1} decreases with z.

Note that the redshift space distortion and lensing convergence terms are strictly also relativistic.

$$\Delta^{ ext{std}} = \delta - rac{1}{\mathcal{H}} oldsymbol{n} \cdot rac{\partial oldsymbol{v}}{\partial \chi} + (5s-2)\kappa,$$

They are often omitted in the correlation function, but their effects can be significant.

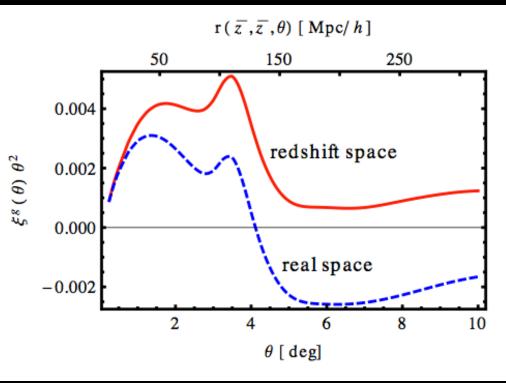
Example:

Transverse correlation of

 $\delta - rac{1}{\mathcal{H}} oldsymbol{n} \cdot rac{\partial oldsymbol{v}}{\partial \chi}$.

showing transverse BAO bump

(Montanari, Durrer 2012)



Power spectra and observations

P(k) is not observable – and we must assume a model (eg LCDM) in order to relate it to observations.

The lightcone correlation functions / angular power spectra are observable and do not require an assumed model to test against observations.

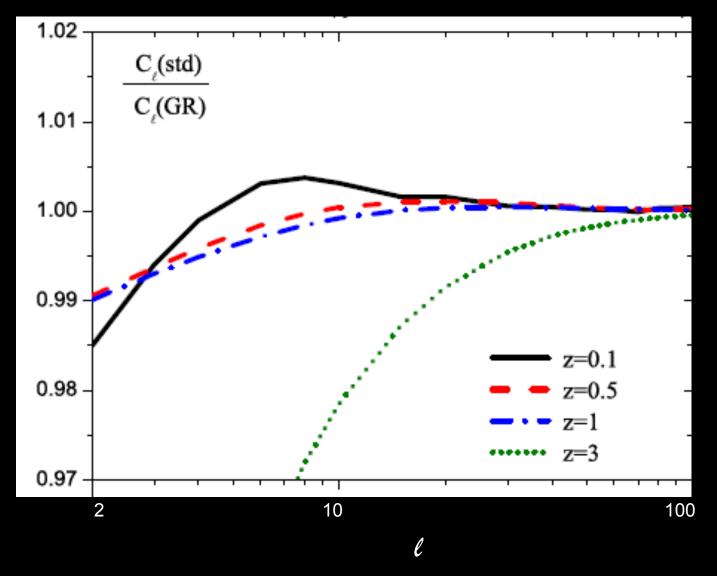
$$\xi(\mathbf{n}_1, \mathbf{n}_2, z_1, z_2) = \langle \Delta(\mathbf{n}_1, z_1) \Delta(\mathbf{n}_2, z_2) \rangle = \sum_{\ell, m} C_\ell(z_1, z_2) Y_{\ell m}(\mathbf{n}_1) Y_{\ell m}^*(\mathbf{n}_2)$$

Transverse case $z_1 = z_2 = z_2$:

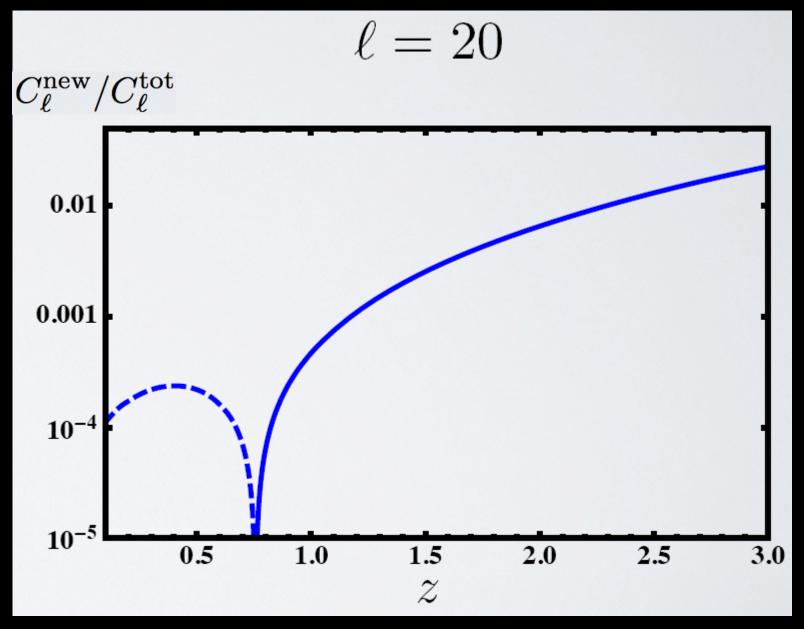
$$\Delta(\boldsymbol{n}, z) = \sum_{\ell m} a_{\ell m}(z) Y_{\ell m}(\boldsymbol{n}),$$

$$a_{\ell m}(z) = \int d\Omega_{\boldsymbol{n}} Y_{\ell m}^{*}(\boldsymbol{n}) \Delta(\boldsymbol{n}, z), \quad C_{\ell}(z) = \langle |a_{\ell m}(z)|^{2} \rangle$$

 $C_{\ell}(z)$



(Bruni et al 2011)

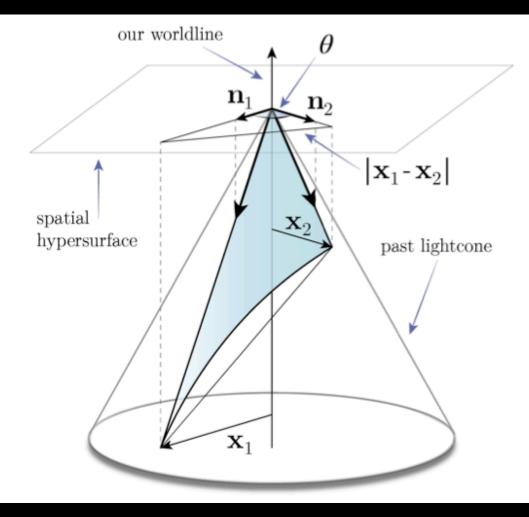


(Bonvin, Durrer 2011)

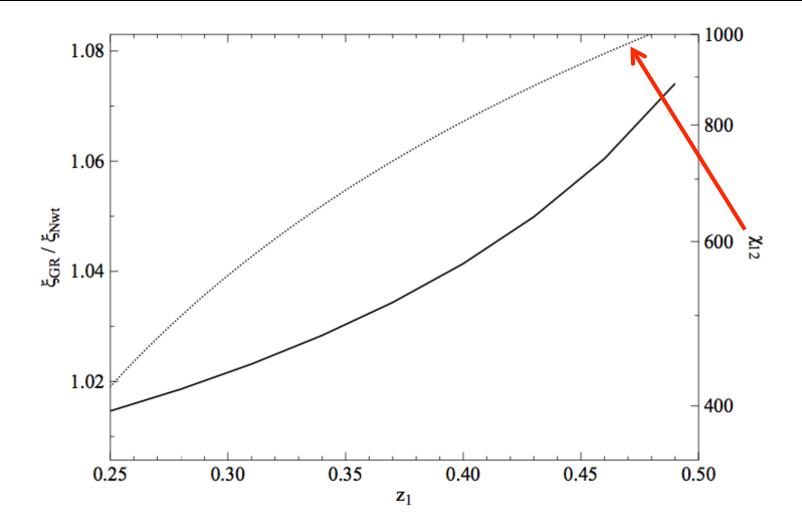
Correlation functions

$$\xi(\mathbf{n}_1,\mathbf{n}_2,z_1,z_2) = \langle \Delta(\mathbf{n}_1,z_1)\Delta(\mathbf{n}_2,z_2) \rangle$$

GR corrections for wide-angles and large redshift difference

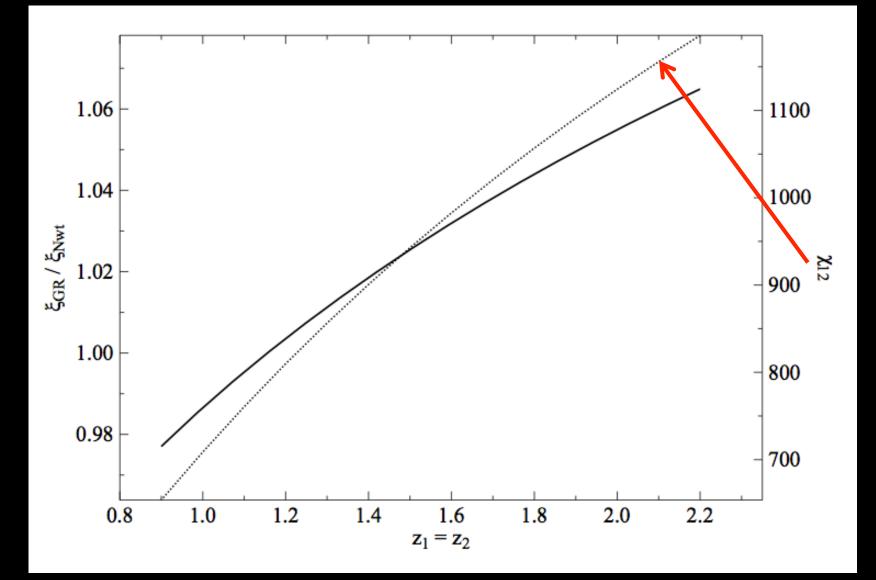


Radial $\xi(z_1, z_2 = 0.1, \theta = 0.1 \text{ rad})$ (local terms)



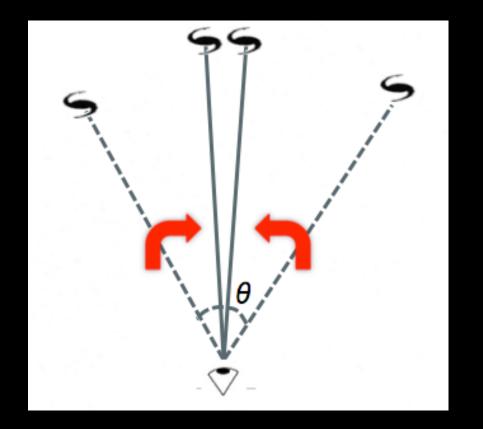
(Bertacca, RM et al 2012)

Transverse $\xi(z_1 = z_2, \theta = 0.3 \text{ rad})$ (local terms)

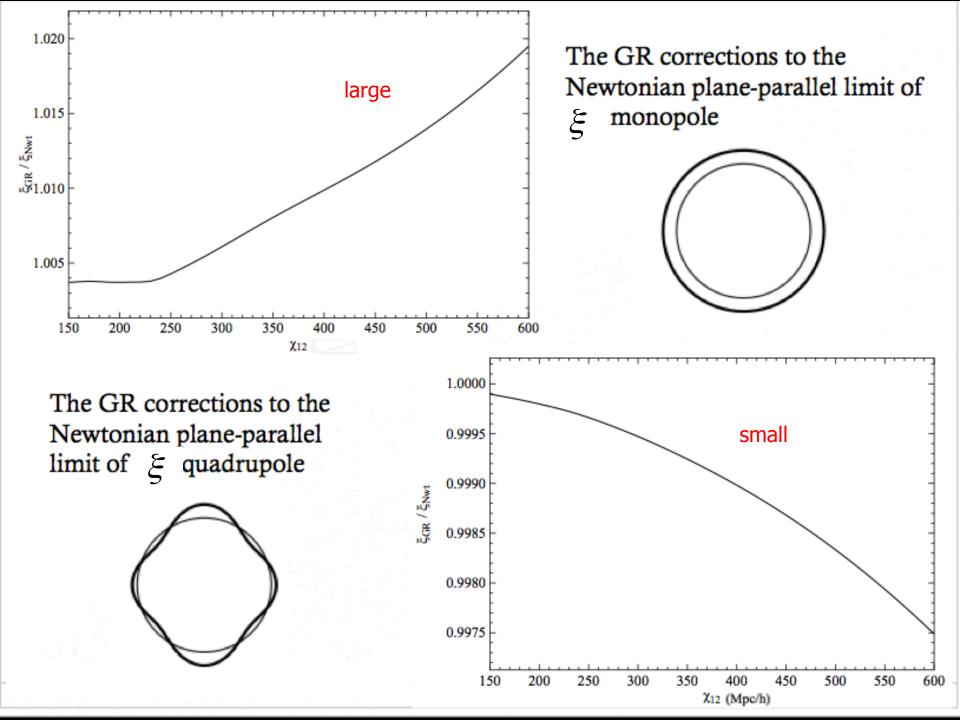


Flat-sky (plane-parallel) limit:

as in the standard Kaiser formulation.



What are the GR corrections to the Newtonian Kaiser case?



Bias and GR

Simple scale-independent bias model for linear scales:

$$\delta(k,a) = b(a)\delta_m(k,a)$$

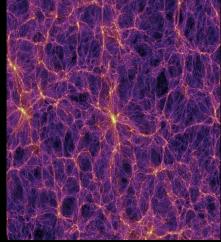
Gauge-dependent – only meaningful on sub-Hubble scales. What is the physical frame that this law holds in? The comoving (rest) frame:

(Wands, Slosar 2009)

$$\delta_{\text{com}} = b\delta_{m,\text{com}}$$

$$\delta_{\text{com}} = \delta - 3aHv, \quad v = v_m$$

$$\delta = b\delta_m - 3(b-1)aHv$$

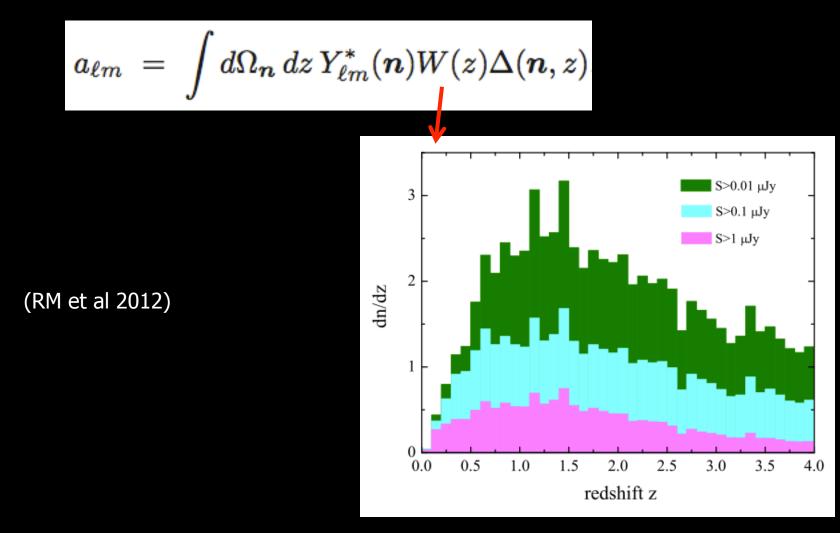


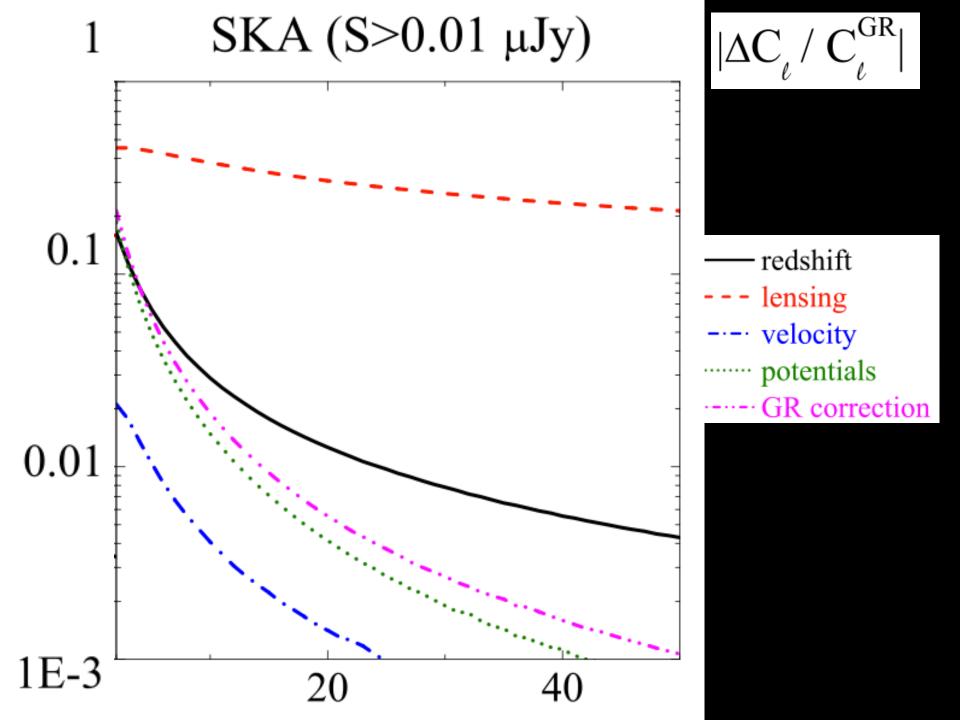
Note that GR Poisson is

$$\nabla^2 \Phi = 4\pi G a^2 \rho \delta_{\rm com}$$

SKA radio continuum surveys

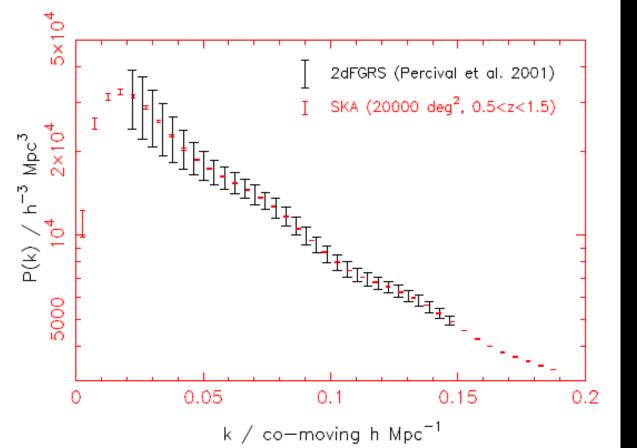
Integrated signal from all radio sources – no tomography





SKA HI surveys: power spectrum

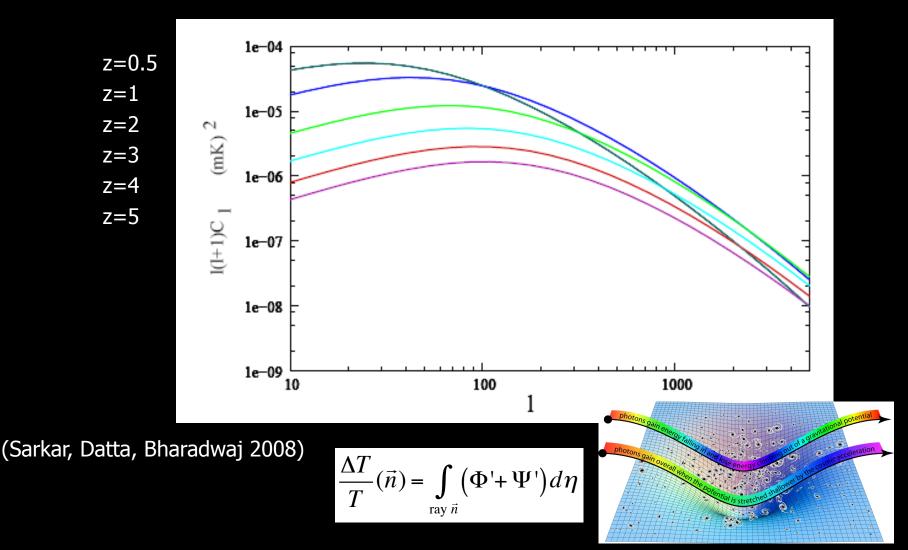
billion galaxies, z ~ 1-2, spectroscopic,huge volume.
 Previous work on SKA HI surveys, using Newtonian analysis
 (and no lensing or redshift space distortions)



(Blake et al 2004)

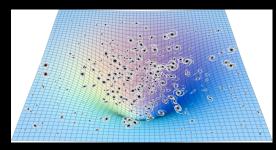
Late ISW

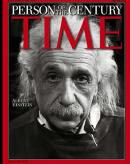
Previous work on SKA HI correlated with the CMB (WMAP): Newtonian analysis of HI galaxy distribution



Message

Cosmology is not Newtonian gravity + expanding background - even for the galaxy distribution.





Proper GR analysis of the observed galaxy distribution shows corrections O(1 - 10%) on large scales.

However, cosmic variance also grows on large scales - threatens to submerge the GR corrections.

Multiple-tracer method can solve this

(Seljak 2009; Yoo et al 2012)

Future work

GR corrections are small but could affect precision cosmology.

1. Observability of GR corrections:

Multiple tracers to beat down cosmic variance

2. Predictions for SKA HI surveys

Tomography will improve GR signal

3. Synergy of SKA + EUCLID

