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Cosmological Perturbation Theory

Hideo KODAMA and Misao SASAKI*
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*Department of Physics, Kyoto University, Kyoto 606
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The linear perturbation theory of spatially homogeneous and isotropic universes is reviewed
and reformulated extensively. In the first half of the article, a gauge-invariant formulation of the
theory is carried out with special attention paid to the geometrical meaning of the perturhation:
In the second half of the article, the application of the theory to some important cosmological
models is discussed.
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summary:

» vacuum energy is simplest model for acceleration
» Nno new degrees of freedom

» inhomogeneous (space-time dependent) vacuum
implies energy transfer

» any dark energy fluid can be decomposed into
interacting vacuum+fluid (like scalar field quintessence)

» inhomogeneous (space dependent) perturbations
require physical model for interactions

» distinguish by observational data

» worked example: decomposed Chaplygin gas



Dark energy models

e
» quintessence e
o self-interacting scalar fields, V(g). - :
> barotropic fluid Ef L i
o exotic equation of state, P(p) §3 17 cue
o unified dark matter + energy 3§, . cwtien
g \ L
> interacting dark energy, ITt) B Y
o coupled quintessence LL 1.;\3

mass density

motivated by astronomical
observations, but lacking persuasive
physical model



Simplest model

» vacuum energy
o energy of empty space
o undiluted by expansion
o no new degrees of freedom

o 1L
17 =-Vg,
perfectfluid 7" = Pg" + (p + P)u'u,

but no particle flow, hence 4-velocity, u, undefined



Homogeneous vacuum

» 8nG V = A = constant
o empirical value is cosmological constant problem

Inhomogeneous vacuum

» interacting vacuum:
VMT,ﬁ‘ =V, (=Vg,)
= —V,V
= (), = energy flow

» conservation of total (matter + vacuum) energy:
V.G =87GNV, (TF+TH) =0 = V,1'=-Q,



4-velocity

» perfect fluid
Tl = Pgl + (p + P)u'u,

=  1''u" = —pu”

> vacuum
P — Y Al
Tl/ T Vgl/
=  TM'u" = -=Vu" Vu"

o all observers see same vacuum energy
so 4-velocity undefined
o but energy flow defines irrotational potential flow

Q,=-V,V




FLRW vacuum cosmology:

homogeneous 3D space = V'=/V(1)
» Friedmann equation

e K
=——(+V) -

az
» Continuity equations for matter + vacuum

1% = Q.
> e.q.,

Freese et al (1987); Berman (1991); Pavon (1991); Chen & Wu (1992); Carvalho
et al (1992); Al-Rawaf & Taha (1996); Shapiro & Sola (2002); Sola (2011); ...

H2

> Freedom to choose any V(%)
» more a description than an explanation? like V(¢)?



Linear perturbations

Inhomogeneous 3D space
ds® = —(1+ 2@*))('17‘2 + 2a0; Bdtdx' + a* (1 —24)di; + 20,0, E] da'dar?
» Matter:

p— p(t)+op(t,a"), P — P(t)+dP(t,2"), wu,—u,=[—1— ¢ 00

» Vacuum: Vo V() + 6V (£ 2)

» Interaction: (see Kodama & Sasaki 1984)

Qv = (Q+0Q)uy + f, = [=Q(L + 0) = 5Q (Di(f + Q)

vacuum-matter momentum transfer

» need physical (covariant) interaction to determine
energy-momentum transfer 4-vector Q,,
» same FRW cosmologies may have different perturbations



perturbed equations of motion
inhomogeneous 3D space = V(t,x)) = V() + 6V(t.x))

» matter+vacuum energy conservation:
2

op+3H(0p+06P) —3(p+ Py + (p+ P)V—Q (H +a’F — aB) = —0Q — Qo
a

oV = 00Q + Qo .
» matter+vacuum momentum conservation:
(p+P))—32H(p+P)i+ (p+P)p+06P = — f+ Q0.
—5V =f+ Q0.

vanishing vacuum momentum requires vacuum pressure gradient
balanced by force on vacuum

Vi (—V) =V, (f + Q@)



Gauge-invariant perturbations

» vacuum perturbation on hypersurfaces orthogonal to
energy transfer vanishes identically:

Apvc:om = oV + (f -+ VQ) =0

» d hypersurfaces on which vacuum is homogeneous

» comoving matter density:

0Pcom = 0p + po
» comoving vacuum density may be non-zero

Speom = OV + VO = —f
» e.q., Poisson equation:

VQ(I) — 47TGN (5,000111 5,5c:om>




FRW cosmology

FRW cosmology
+ linear perturbations



FRW cosmology

_ FRW cosmology
+ linear perturbations

f —
X

vacuum energy uniform on spaces orthogonal to energy flow



Gauge-invariant perturbations (ll)

» curvature perturbation on uniform-matter hypersurfaces:

(== ——0p
P
» curvature perturbﬁtion on uniform-vacuum hypersurfaces:
C= ) — =0V
G = =1 7
» relative (entropy) vacuum perturbation:
S=3(¢—¢)

» e.q., hon-adiabatic vacuum pressure perturbation:
(1+)Q[Q +3H(p+ P)] -

5pn'1c — ‘ S
. OH2(p + P)




Dark energy cosmology

» any dark energy cosmology (with p,,+P,>0) can be
decomposed into interacting vacuum + fluid

O=Vip)y

for example:
» interacting vacuum + scalar field (quintessence):
1., 1.,
=—@ +V, P =—q@" -V,
lOde 2 (;0 d 2

Vi) = 0,=V(pV,g

» interacting vacuum + matter: wands, De-Santiago & Wang (2012)

pde=pm+v’ Pde=_V’ Q=V

» Identical at background level

distinguish by evolution of perturbations
need physical (covariant) model for interaction




Generalised Chaplygin gas

Kamenshchik, Moschella and Pasquier (2001); Bento Bertolami & Sen (2002)

» exotic dark energy with barotropic equation of state:
Pycg = —Apyc, oCg

O two constants (dimensionless, o, and A)

o unified dark matter + dark energy model

pecg = (A+ Ba ")
s BYU+9)=3 a5 a0 = 0

— AU a4 — o0

o can be related to generalised higher-dimensional DBI scalar field

1/(14«)




Decomposed Chaplygin gas

Bento, Bertolami and Sen (2004)
L L — -
U’;n = ; Pm — Pde =+ Pde 9 V = de

» FRW interaction can be written as

¢ Pm V
— 3aH
Q ) (/)m T ‘7>

» model has one dimensionless parameter, o
» A appears as an integration constant

A= (pm + V)av

> decomposed model allows two independent perturbations

> matter perturbations:  (,, = —i — —dp

-
/) T

» vacuum perturbations: | H




Two different perturbed models

> Barotropic (adiabatic) model, V=V(p, ):

(=C¢, = S=0

> adiabatic sound speed Cs = = = v
PeCg Pm TV
> comoving vacuum perturbation Fm —5p = v 5
J = —0Pcom — _/) 0 Pcom
T

> Non-adiabatic: e.g., energy transfer along matter 4-velocity, O, = Q u,,

C#Cn = S#0

> zero momentum transfer:  f = —0 peom = 0

. _ ‘ oP _
> zero sound speed: 0P =0 = = (()—/)> =0
- Ccomn



Barotropic 6CG model (adiabatic perturbations):

« Oscillations (or blow-up) of GCG power spectrum if DE and DM
combined in a single barotropic fluid with adiabatic sound speed

c’=-aw

. Allowed GCG model extremely close to the LCDM model (a—0)

CMB+SN1A+BAO +L.SS +|ISW +L.SS(b)
1 1 1 1
05 05 05 05
0 5 0 5 0 5 0 5
%107 % 107 %10 %107
0.78
0.76 075 o 0.76
074 : 0.74
: 0.74
o ~ 07 o & 0.72
0.72 ' 0.72
07
07 0.65 0.7 0.68
0.68

% 10~

w

%10~

(&]]

%10~

% 10



Effect on density power spectrum:

“The end of unified dark matter?”

Havard Sandvik, Max Tegmark ,
Matias Zaldarriaga, loav Waqga
astro-ph/0212114

¢’ =- ow

108 |
J //

108 < 0,/ -
104

’c};looo

=

£

= 100

o

—0.00000081 < a < 0.0000079]

| \,'/lf‘\l

0.1
0.01 0.1 1

k [h Mpec-!]

FIG. 1. UDM solution for perturbations as function of
wavenumber, k. From top to bottom, the curves are GCG models
with a = —10—%, —10—5, 0 (ACDM), 10—5 and 10—*, respectively.
The data points are the power spectrum of the 2df galaxy redshift

survey.



Park, Hwang, Park & Noh, arXiv:0910.4202
——baryon power spectra behave relatively smoothly, compared with
the GCG power spectra which shows large oscillations
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Issues for unified dark matter models:

Galaxy power spectrum: §,=b 3,

identify galaxies with collapsed halos in linear density field

0

should we include inhomogeneous dark energy in threshold for collapse?

what about unified dark matter models? P 0P, + 0p, 0
IOC + IOb
or interacting matter + vacuum? 5 op, +0p, + 0V 00

IOC+IOb+V



Geodesic (non-adiabatic) model:

Energy flow is along dark matter velocity, O, = Q u,,

» No momentum exchange in the dark matter rest frame
= matter follows geodesics f — —) Peom = 0
= zero sound speed SP.o = 0

= note: matter velocity irrotational (like a scalar field)

uMOCVﬂV

See also Dust of dark energy, Lim, Sawicki & Vikman, arXiv:1003.5751
+ Creminelli, d’Amico, Norena, Senatore & Vernizzi, arXiv:0911.2701



Results : Matter power spectrum, P(k)

10 —_—e - —— ————
i

a=0.1

10 F
' No oscillations or blow-up in
' the matter power spectrum

P(K)[(h""Mpc)?]

10 F oy e .
- (for o positive or negative)
100 -4 . i sy ljll‘-a i i PR .;111-2 2 PR S .;;‘-1 i 2 AN et e 2
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Constraints on geodesic model

0.85
0.8 0.8
o 0-75 o 0.7

0.7

0.65 . . . . 0-6 N N . .
-02 0 02 04 -02 0 0.204

o

CMB+SNIa+BAO CMB+SNIa+LSS

o Allowed region for o parameter becomes much
larger than for barotropic GCG model:

o barotropic model: a < 0.000014

o geodesic model: -0.15 < 0. < 0.26



Dark energy sound speed

» any dark energy cosmology can be decomposed into
interacting vacuum + barotropic fluid (p+P>0)

» fluid sound speed determines dark energy sound speed if

energy-flow follows fluid flow, O, o u,
(since vacuum then homogenous on comoving-orthogonal hypersurfaces)

» e.g., quintessence is interacting vacuum-+stiff fluid (c=1)

» interacting vacuum + fluid provides an effective model for
dark energy with arbitrary sound speed



summary:

» vacuum energy is simplest model for acceleration
» Nno new degrees of freedom

» inhomogeneous (space-time dependent) vacuum
implies energy transfer

» any dark energy fluid can be decomposed into
interacting vacuum+fluid (like scalar field quintessence)

» inhomogeneous (space dependent) perturbations
require physical model for interactions

» distinguish by observational data

» worked example: decomposed Chaplygin gas
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