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How do we test inflation?
How were primordial fluctuations generated?
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Power Spectrum

A very successful explanation is:

Mukhanov & Chibisov 1981; Guth & Pi 1982; Hawking 1982; Starobinsky 1982; Bardeen, Steinhardt & Turner 1983

m Primordial fluctuations were generated by quantum fluctuations of
the scalar field that drove inflation. = almost Gaussian
m The prediction: a nearly scale-invariant power spectrum in the
curvature perturbations, (:
o Pc(k) = A/K+=n ~ AJK3
e where n; ~1and A i§ a normalization.
o Two-point function (((7,k)((7,k')) = (27m)363(k + k') P¢ (k)
m The latest results from CMB [WMAP 7-year Komatsu et al. 2011], BAO
[SDSS DR7 Percival et al 2010, and SNe la [SHOES Riess et al 2009]:
e ng = 0.968 + 0.012 (68% CL)

e ng # 1: another line of evidence for inflation
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Bispectrum

m Is there any information one can obtain, beyond the power spectrum?
= Three-point function!

m (C(k1)¢(k2)((k3)) = (27)36° (ky + ka2 + k3) Be(ki, k2, ks)
] Bc(kl, kz, k3) = (amplitude) X b(kl7 kg, k3)
shape of triangle

m Focus on the squeezed shape for today’s talk.

(a) squeezed triangle
(k =k, >>k,)
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A non-linear correction to temperature anisotropy

m The CMB temperature anisotropy, AT/ T, is given by the curvature
perturbation in the matter-dominated era, ¢.

o On large scales (the Sachs-Wolfe limit), AT/T = —¢/3 = —(/5.
m Add a non-linear correction to ¢:
° CD(X) = CDg(x) + fNL[¢g(X)]2 [Komatsu & Spergel 2001]
o fy. was predicted to be small (~ 0.01) for slow-roll inflation.
[Salopek & Bond 1990; Gangui et al. 1994]
m For a scale-invariant spectrum, Pc(k) = A/k3,
Bg(kl, ko, k3) = (6A2/5)f/\/1_ X [1/(/(1/(2)3 + 1/(/(2/(3)3 + 1/(/(3/(1)3]
° Bg(kl,kz, k3) peaks when k3 < ky ~ k.

o Therefore, the shape of fy; bispectrum is the squeezed triangle!
[Babich et al. 2004]
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Single-field Consistency Relation
Maldacena 2003; Creminelli & Zaldarriaga 2004; Seery & Lidsey 2005
For ANY single-field models*, the bispectrum
in the squeezed limit is given by

] Bg(kl, kz,k3) ~ (1 — HS) X Pk(kl)P\(kg)
m With the current limit ns, = 0.968, fy, is predicted to be 0.013.
m Therefore, a convincing detection of fy; > O(1) would rule out ALL
of the single-field inflation models, regardless of:
o the form of potential [See, however, Chen, Easther & Lim 2007]
o the form of kinetic term (or sound speed) [See, e.g., Seery & Lidsey 2005]
o the form of gravitational coupling [See, e.g., Germani & YW 2011, 1106.0502]
o if the initial state is BD vacuum [See, e.g., Agullo & Parker 2011; Ganc 2011]
m Measurements
o fy =32+42 (95% CL) from CMB [WMAP 7-year Komatsu et al 2011]
o fyy =27+ 32 (95% CL) from CMB and LSS [Slosar et al 2008]
o Planck’s expected error bar is ~ 5 (68% CL)!

m A convincing detection of fy; would be a breakthrough.
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If fy, is detected, in what kind of models?

m Detection of fy; = multi-field models
m In multi-field inflation models, {(k) can evolve outside the horizon.
e Curvaton mechanism [Linde & Mukhanov 1997; Enquist & Sloth; Lyth &
Wands; Moroi & Takahashi 2001]
o Inhomogeneous reheating [Dvali, Gruzinov & Zaldarriaga 2004]

m This evolution can give rise to non-Gaussianity; however, causality
demands that the form of non-Gaussianity must be local!

o ((x) = Cg(x) + (3/5) u[Ce(X)]* + ASg(x) + B[Sg(x)]* + -
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How to compute 2nd order (?

m Cosmological perturbation theory
e Straightforward

e Entropy modes source (: “entropic transfer” [Garcia-Bellido & Wands
1995]

o Very hard because 2nd order
m The §N formalism

[Starobinsky 1985; Salopek & Bond 1990; Sasaki & Stewart 1996]

e ¢ = 0N on super-horizon scales

e 0N is powerful; it gives the
statistics of perturbations
without solving equations for
perturbations!!
“It’s just like magic.”

o Very popular in the literature
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The 0N formalism: intuitive picture

m N = number of e-folds counted backward in time
(from the end of inflation) ~ log[expansion]

o a(tena)/a(t) = exp N1 () = [ Halt = In [a(ioena) /a()]
m Difference in log[expansion] is (.

more expanded region
log[a(x1)] log[a(xz)]

o

X1 X2
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The 6N formalism: more precise definition

m ¢ = JN from an initial flat time slice to a final uniform density time
slice on super-horizon scales.

o Pl
N(1,,1;x)
(1) = L.
6Nl p cons

Y()=0

ON = N(t,,t;;X) - No(t,,1,),  Ny(t,,t,) =1In [a? ;
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ON for slow-roll inflation
Sasaki & Tanaka 1998; Lyth & Rodriguez 2005

m In slow-roll inflation, the evolution, N, is determined only by the field
value, .

m Non-linear /N for multi-field inflation:

SN = N(o' +6¢") ZN,6¢*+ Z 801003,

— ON

where derivatives are evaluated at the horizon exit: N; = Bl

m Non-Gaussianity is given by

3 ZI,J NN,
==
5 2[>°, NN
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Linear perturbation theory in multi-field inflation
Kodama & Sasaki 1984; Mukhanov, Feldman & Brandenberger 1992

ds® = —(1 + 2A)dt? + 2aB ;dx'dt + a*[(1 — 21))d; + 2E ;] dx"dx!

] (590"5 determine how curvature perturbations, ¢, evolve.
5¢' + 3Hsp! + (5(,0 + Z Vb = =2V, A+ {A—&— 3¢+ (a E-— aB)}

2

H (1/} + HA) + % [w + H(PE - aB)] — _4xGép
v+ HA = —47Gdq
b0 = > |1 (60— ¢1A) + Vi 001
1
dq;i = -— Zle&Pl,i
!
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Adiabatic and entropic perturbations
Gordon, Wands, Bassett & Maartens 2000; Nibbelink & van Tent 2001

oo = cos 09 + sin oy , 55 = —sin 03¢ + cos Aoy
: 2 )
X background trajectory 56 + 3HS6 + @4_ Voo — 92> o
s P k? 2
Ss =2V, A+6 |A+ 30+ ?(a‘ —aB)

S V, .
entropic = orthogonal +2(00s)" —2—00s.
5o adiabatic = parallel

.. . ‘2 . i ‘K
<>‘s+3H65+G2Z+ Vss+392> 55:2 -0
(I) a 6 27Ga

& = (cosf)p+ (sinh)y -

(2
e (Gauge-invariant curvature perturb. is sourced only by entropy
perturb. If the trajectory is curved, it can change on large scales.

5p . HE 2H .
— (= — — = —42U + —0)
¢ d+Hp, C 7 + —00s
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Two approaches to non-linear (

m Covariant formalism (valid on all scales) [Hawking 1966; Ellis, Hwang & Bruni
1989; Langlois & Vernizzi 2005; 2007]

o Integrated expansion, N = } [ d7®©, replaces (. (N = ©/3)
Non-perturbative generalization (covector) of ¢: (, = 9, N — %Oﬂp
Promote perturbations to covectors, e.g.,

00 — 0, = cos00,¢ +sin00,x, 6s — s, = —sin0,,¢ + cos 00, x
e Evolution of the covectors “mimics” linear perturbations:

. i p
Cu=LuCu = _p+7P (@LP — p_@up> ~ s, (super-horizon)

m 0N formalism (valid on large scales) [Starobinsky 1985; Salopek & Bond 1990;
Stewart & Sasaki 1996; Lyth, Malik & Sasaki 2005]

o N
4:5/\/—[ ?dp
p

Are they equivalent on large scales?
If yes, which approach has more advantages?
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Fully non-linear equivalence between /N and
covariant formalisms
Langlois, Vernizzi & Wands 2008; Suyama, YW & Yamaguchi 1201.3163; Naruko 2012

_ N - S p
L e

|} setting the ADM metric with 3; = O(e = k/aH) and on ¥,

ds? = —N2dt? + a*e®¥ (e");(dx' + B'dt)(dx/ + F dt)

Lo 3 __© b PO N__H 3
c,_Na,w + O(¢), 30+ P) (8,P /_)(),/))- ﬁ+P5,P+(9(e)

|l integrating over x’ and choosing an integration constant

/ /
P _ 210

YRR s
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2nd order ( on large scales in two-field inflation
Rigopoulos et al 2004; Langlois & Vernizzi 2007

m Adiabatic: 6o = cos 3¢ + sin 5y + dsds/(25)
2,

H . H
00050 +059) + 5 (Vas +40%)05" — 5V,

o3

¢(t) ~
m Entropic: ds = —sin 08¢ + cos 05y + do(28s + 050)/(26)
05+ 3Hds + (Vs + 30%)ds ~

0 (5'5)2 — E (é + 9& - Hé) §sds — <1V555 — 53
o o 2 o

o

3

03,
5 Vs — 9;)55

m Solutions:

C(t) = G+ 05, TI(8) + 652
5s(t) = 6s. T (1) + 652 TP (1)
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fye in two-field inflation

m Covariant (long wavelength) formalism [yw 2012, 1110.2462

. 2
fNL — I{Ilz)rlzon + fI;clllr_ansfer ~ / |:TC(1):|

4¢2 [T(l)r

§ftransfer — * ¢
2

> m)?

1+ 2. (T< )

hOrlZOn (67755 [T(l :| + 3\/? 7705* + € — 7]00/2)

3
5N - 2

[1 +2e, (Tél))z]

m 0N formalism [Lyth & Rodriguez 2005]

3 21, NN,
v = S e
5 20>, NN
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“Large” fy, in two-field inflation

m fy ~ 0(1 — 10) for m1/m2 = 1/9 [Rigopoulos et al 2005];
fNL ~ 0(001) [Vernizzi & Wands 2006; Rigopoulos et al 2006; S. Yokoyama et al
2007]

2
V(¢,x) = 7(1)2 + E><2, my < my < H, (1)

m—fy~ 0(1 — 10) [Byrnes et al 2008; Mulryne et al 2009]

m>

a2
7XX2€ Ag (2)

V(e x) =

m fy ~ 0(1) [Tzavara & van Tent 2011]

V(#,x) = a2X® + by — by¢? + bsg* (3)
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Numerical estimate: f; in two-field inflation

2 2
m m
142 2 .2
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y - - g
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8 F m,fm,=1/9 I B
015 ]
T Z
8 x is the 1stinflaton. 0.1 1
o 005 ]
X 4F
3F T T
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® A peak in NG shows up at the turn. It is sourced by entropy modes.
e The plateau contribution of NG is from the horizon exit ~O(g) ~0.01.
@ O8N and covariant formalisms match within ~ 1%.
e Slow-roll approx. has been used only for the initial condition (at horizon

exit).
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How did the peak in fy; show up at the turn?

40 T
ey g
of T ]
i total
2 : intrinsic 2nd order, 55 -+
i s times ss' .
10 55 times dosM/dt - ]
g
)
s
0
10 F ]
20 » J
-30 . ‘ ) ‘ ‘
10 15 20 25 30 35 20

m Each term in 2nd order entropic transfer becomes large but
I' Only the small, net effect remains due to symmetry of
the potential.

m The difference in growths of terms makes the peak shape.
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Numerical estimate: fy; in two-field inflation

m2

442
V(6 x) = Txxze AP

[Byrnes et al 2008; Mulryne et al 2009; YW 2012]

m Large negative NG shows up during the turn. But fy; ~ —2.1 after
inflaiton.

] o5 b =005 m=1 L ON) 1

E fyL(trans) ---eeo
. -30 : : : : : : :
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Numerical estimate: fy; in two-field inflation

V(¢,x) = ax? + bo — ba¢?* + bagp®

[Tzavara & van Tent 2011; YW 2012]

m fy; ~ 1.2. The ratio is ill-defined when fy; crosses zeros.

10 T T T
a,=1, by=7/20, b, = 1/10, by =b,/(4b,)
5[
20 T T T T T T T g‘ 0
18 F 8,=1, b,=7/20, b = 1/10, by =b,2/(4b) E|
16 | E| s
14 3 S i
Irys 3 Ty (ON) ——
fyL(trans) ----....
~ 0 ] -10 | | | |
ol E 11l fdON) g (trans) —— |
or i 9 105F ‘ E
4t i ®
o 1
i 3 0.95 | H[ ‘ H E
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Fate of 7y, in the adiabatic limit
Meyers & Sivanandam 2011; YW 2012

m It is possible to have large fy; in two-field inflation; the asymptotic
values are model-dependent.

m After all entropy modes decay, the inflationary trajectory approaches
to in which ( is conserved and one can make
predictions for observations.

m In this case, there are two regimes:

o Initially, entropy modes are light and source (.
o Eventually, they get heavy and damps away.

How fast fy, approaches to its final value?
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Analytic estimate: fy; in the adiabatic limit
YW 2012, 1110.2462

e l/ —Re(v
2R 32 M)y <k> “
V2H T(3/2)° aH

C - 3-ne )

To answer the fate of fy;, we solve the super-Hubble evolution of  in 3 cases:

m (A) Overdamped (light) s ~ a~"=: s < 3/4 and (0/H)? < 3/4
slow-roll & slow-turn ~ const.) = fy, ~ C(z)/égsymp ~ a2

|65)]

) Underdamped (heavy) s ~ © Nss > 3/4 and (6/H)? < 3/4

(
= (B
(slow-roll & slow-turn 6/H ~ 1,5 ~ a= ") = fy, ~ C(Q)/Cgsymp ~a?
(C
(f

m (C) Underdamped (heavy) ds ~ : Nss > 3/4 and (G/H)2 > 3/4

ast-turn 0/H ~ a=3/2) —fy, ~ ¢ /Cgsymp ~a?
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Comparison of fy; in the adiabatic limit
YW 2012, 1110.2462

10 T

. ; 15 . . : :
it (@symp)) ——— I T (@symp)l ———

my/my=1/4 av my/my=1/20 as

b Tgg oo | L e

° 10 Nos
B =
E £
2 >
8 2]
8 8
Z =
£ 2
2 i
S 2z
=] )
g 5
S o
= -

20 . . . . L L L
30 32 34 36 38 40 42 44
N N

m The analytic estimate of fy; matches with numerical results with
various potentials.
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Conclusions

m We have showed the super-Hubble evolution of the primordial NG in
two-field inflation by taking two approaches: the /N and the
covariant perturbative formalisms.

m The numerical results agree each other within 1% accuracy.

m The peak feature appears on fy; at the turn in the field space, which
can be understood as the cancellation between terms in the entropic
transfer.

m It is possible but difficult to have persistently large NG in two-field
inflation.

m fyr in the adiabatic limit
for generic potentials.
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