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1. Motivation



Modified gravity
DGP, Galileons, Massive gravity…

- A new scalar degree of freedom,     , participates 
in long-range gravitational interaction

- Modification would persist down to small scales...

- Need screening mechanism in order to recover 
GR on small scales and to pass solar-system tests

�



Screening mechanisms

This is made possible by the Vainshtein mechanism

is responsible for gravity modification

is screened on small scales

�

�

Vainshtein 1972



Screening mechanisms

This is made possible by the Vainshtein mechanism

is responsible for gravity modification

is screened on small scales

�

�

Let’s analyze how the Vainshtein mechanism operates based 
on the most general second-order scalar-tensor theory!

Vainshtein 1972

See Sbisa, Niz, Koyama, Tasinato 1204.1193 for a similar analysis in the context of massive gravity



2. Brief review
–– Vainshtein mechanism
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Example
Scalar-field theory non-minimally coupled to matter :

L =
1

8�G

�
�1

2
(��)2 � r2

c

3
(��)2��

�
+ �T µ

µ

�(     : dimensionless) Non-linear derivative interaction
(cubic Galileon)

O(H�1
0 )

Key non-linearity

r2
c�� �� 1can be large even if

L � 1
8�Ge�

�
�1

2
(��)2

�
+ �T µ

µ , Ge� � G

Effectively weakly coupled to matter
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Spherically symmetric solution

EOM:

Spherically symmetric solution:

�r� =
3r

8r2
c

�
�1 +

�
1 +

16
3

rsr2
c

r3

�

rs(     : Schwarzschild radius)rV := (rsr
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= �8�GT µ

µ � 8�G�

–––– screened!



2. Brief review
–– The most general second-order

scalar-tensor theory



Horndeski’s theory
(Generalized Galileon)

In 1974, Horndeski determined the most general Lagrangian of the form

L = L(�, ⇥�, ⇥2�, ⇥3�, · · · ; gµ� , ⇥gµ� , ⇥2gµ� , ⇥3gµ� , · · · )

having second-order field equations both for      and� gµ�

Horndeski, Int. J. Theor. Phys. 10,363 (1974)



Horndeski’s theory
(Generalized Galileon)

In 1974, Horndeski determined the most general Lagrangian of the form

L = L(�, ⇥�, ⇥2�, ⇥3�, · · · ; gµ� , ⇥gµ� , ⇥2gµ� , ⇥3gµ� , · · · )

having second-order field equations both for      and� gµ�

Horndeski, Int. J. Theor. Phys. 10,363 (1974)

Horndeski’s theory is equivalent to the generalized Galileons [Deffayet 

et al. 2011] in 4D

TK, Yamaguchi, Yokoyama, Prog. Theor. Phys. 126, 511 (2011)



Horndeski’s theory
(Generalized Galileon)

L = K(�, X)�G3(�, X)��

+G4(�, X)R + G4X

�
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Horndeski’s theory
(Generalized Galileon)

L = K(�, X)�G3(�, X)��

+G4(�, X)R + G4X

�
(��)2 � (�µ���)2

�

+G5(�, X)Gµ��µ���� 1
6
G5X

�
(��)3

�3��(�µ���)2 + 2(�µ���)3
�

Lagrangian for the most general second-order ST theory:

• 4 arbitrary functions of      and

• Non-minimal coupling to gravity

where X := �1
2
(��)2, GiX := �Gi/�X

� X



Special cases
G4 =

M2
Pl

2

G4 = f(�)

L � M2
Pl

2
R

L � f(�)R

L � Gµ��µ����G5 = ��

�G3(�, X)�� � (��)2��

Einstein-Hilbert

Familiar non-minimal coupling

Kinetic gravity braiding DGP (brane bending mode)

Deffayet et al. 2010 Luty, Porrati, Rattazzi 2003;
Nicolis, Rattazzi 2004

Gravitationally enhanced friction/purely kinetic coupled gravity
Germani et al. 2011; Gubitosi, Linder 2011
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Galileon-like non-linear derivative interactions

Vainshtein mechanism operates generically?

L = K(�, X)�G3(�, X)��

+G4(�, X)R + G4X

�
(��)2 � (�µ���)2

�

+G5(�, X)Gµ��µ���� 1
6
G5X

�
(��)3

�3��(�µ���)2 + 2(�µ���)3
�

G3 � X, G4 � X2, G5 � X2 covariant galileon



3. Vainshtein screening 
in the most general ST 

theory



Setup
• The most general ST theory, minimally coupled to matter

• Cosmological background

S =
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d4x
�
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ds2 = �dt2 + a2(t)dx2
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Setup
• The most general ST theory, minimally coupled to matter

• Cosmological background

S =
�

d4x
�
�g [L+ Lm(�, gµ�)]

ds2 = �dt2 + a2(t)dx2

Non-relativistic matter

Perturbations

ds2 = �(1 + 2�)dt2 + a2(1� 2�)dx2

�� �(t) + ��(t,x), �m � �m(t)[1 + �(t,x)]

Horndeski’s Lagrangian

– Consistent treatment for scalar-field and metric perturbations



Approximations
Weak gravitational field on subhorizon scales
–– Useful e.g. for the study of structure formation 

�, �, Q := H
��

�̇
� 1

�t � �i (Quasi-static approximation)

Keep relevant non-linear terms written schematically as

� = �,�, Q

(�2�)4

(�2�)2, (�2�)3, · · · where

(Quartic terms              do not appear)

Neglect “mass” terms: K�� � �2, · · ·

De Felice, TK, Tsujikawa (2011)
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�2Q

�2 � (�i�jQ)2where

Linear terms

(�2�)2 terms

(�2�)3 terms

A0 :=
�̇
H2

+
�
H

+ FT � 2GT � 2
ĠT

H
� E + P

2H2
,

A1 :=
1
H

dGT

dt
+ GT � FT ,

A2 := GT �
�
H

,

B0 :=
X

H

�
�̇G3X + 3

�
Ẋ + 2HX

�
G4XX + 2XẊG4XXX � 3�̇G4�X + 2�̇XG4�XX

+
�
Ḣ + H2

�
�̇G5X + �̇

�
2HẊ +

�
Ḣ + H2

�
X

�
G5XX + H�̇XẊG5XXX � 2

�
Ẋ + 2HX

�
G5�X

��̇XG5��X �X
�
Ẋ � 2HX

�
G5�XX

�
,

B1 := 2X
�
G4X + �̈ (G5X + XG5XX)�G5� + XG5�X

�
,

B2 := �2X
�
G4X + 2XG4XX + H�̇G5X + H�̇XG5XX �G5� �XG5�X

�
,

B3 := H�̇XG5X ,

C0 := 2X2G4XX +
2X2

3

�
2�̈G5XX + �̈XG5XXX � 2G5�X + XG5�XX

�
,

C1 := H�̇X (G5X + XG5XX) .

K, G3, G4, G5

Coefficients are written in terms 
of                      . (messy!)
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[3] Traceless part

FT := 2
�
G4 �X

�
�̈G5X + G5�

��

�2 (FT �� GT ��A1Q) =
B1

2a2H2
Q(2)

+
B3

a2H2

�
�2��2Q� �i�j��i�jQ

�



[3] Traceless part
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�

Related to propagation speed of gravitational waves:

c2
h :=

FT

GT

TK, Yamaguchi, Yokoyama, Prog. Theor. Phys. 126, 511 (2011)



Spherically symmetric 
configurations
r = a

�
�ijxixj , rH � 1

The 3 equations can be integrated once to give
algebraic equations for
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Coefficients are dimensionless and written in terms of K, G3, G4, G5
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(TIme-dependent)
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Enclosed mass:

Coefficients are dimensionless and written in terms of K, G3, G4, G5
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(TIme-dependent)



�� � �� � GN�M

r2

Let’s see whether or not usual gravity is 
reproduced in the vicinity of the source:

–– ???



Linear solution at large r
At sufficiently large r all the non-linear terms may be neglected
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Linear solution at large r
At sufficiently large r all the non-linear terms may be neglected

�� =
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where µ :=
�M

8�GT
�� �= ��In general,

(as expected)



Linear solution at large r
(but              )

r

rH � 1



Linear solution at large r
(but              )

Large non-linearity
(even for weak field)

r

rH � 1



Linear solution at large r
(but              )

Large non-linearity
(even for weak field)

r

rH � 1

Solve the 3 algebraic equations for                :

Case 1

Case 2

Case 3      the most general case,

� L = G4(�)R + K(�, X)�G3(�, X)��

G4X = 0, G5 = 0

G5X �= 0

G5X = 0

Single quadratic equation for

��,��, Q�

Single cubic equation for

Difficult to solve, but can draw some conclusion

Q�

Q�



Case I: G4X = 0 = G5

L = G4(�)R + K(�, X)�G3(�, X)��
(Non-minimally coupled version of)

Kinetic gravity braiding
Deffayet, Pujolas, Sawicki, Vikman 2010



Case I: G4X = 0 = G5

L = G4(�)R + K(�, X)�G3(�, X)��
(Non-minimally coupled version of)

Kinetic gravity braiding

In order for the solution to be real, G3X (XG3X + G4�) > 0
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L = G4(�)R + K(�, X)�G3(�, X)��
(Non-minimally coupled version of)

Kinetic gravity braiding

In order for the solution to be real, G3X (XG3X + G4�) > 0

Short-distance solution: �� � �� � GN�M

r2
Two potentials coincide!

where 8�GN =
1

2G4
=

1
2G4(�(t))

Time-dependent G in cosmological background

(Consequences of time dependence will be discussed later)

Deffayet, Pujolas, Sawicki, Vikman 2010
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FIG. 1: Relation between the coefficients and the short-
distance solution for Case I. In the shaded region one gets
a real solution whose behavior at short distances is noted.
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FIG. 2: r2Φ′, r2Ψ′, and r2Q′ as a function of r. H−1 = 1.
c2

h = 1.2, α1 = α2 = 1, α0 = 2, β2 = 2, µ = 10−10. Inside the
Vainshtein radius γ = 1 is reproduced, but the concrete value
of the radius depends on the model under consideration.

Let us then evaluate the metric perturbations for each
solution Q′. We begin with the Case I, Q′ ! ±

√
Cβµ/r.

The metric potentials at short distances are given by

Φ′ ! CΦ

8πGT

δM

r2
, Ψ′ ! CΨ

8πGT

δM

r2
, (54)

where

CΦ =
−β2

1 − c2
hγ0

2β1β2 + c2
hβ2

2 − γ0
, (55)

CΨ =
β1β2 − γ0

2β1β2 + c2
hβ2

2 − γ0
. (56)

Although the coefficients look apparently different, now
we use the relations (48) for the first time to show that

CΦ = CΨ =
Cβ

2
, (57)

FIG. 3: Coefficients for which a real solution exists (Case II).

FIG. 4: Coefficients for which a real solution exists (Case II).

i.e., the two metric potentials actually coincide. We thus
obtain the Newtonian behavior

Φ′ ! Ψ′ ! GN δM

r2
, GN :=

CΦ

8πGT
(> 0). (58)

It is interesting to note that the above conclusion holds
even for generic propagation speed of gravitational waves,
c2
h #= 1. Explicitly, one finds

8πGN =
1

2 (G4 − 4XG4X − 4X2G4XX + 3XG5φ)
. (59)

As in the case of the previous subsection, GN is in gen-
eral time-dependent, as it is a function of time-dependent
φ(t) and X = φ̇2(t)/2. We thus illustrate how the Vain-
shtein mechanism fails to suppress the time-variation of
GN in a cosmological background within the context of
some generic scalar-tensor theories minimally coupled to
matter. The claim was originally suggested using the
Einstein frame action in Ref. [20]. Here we explicitly
give the concrete formula with which one can evaluate
the time-variation of GN for a given model.
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Two potentials coincide!
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r2

8�GN =
1

2 (G4 � 4XG4X � 4X2G4XX + 3XG5�)

Time-dependent G:

Experimental constraints: |ĠN/GN | < 0.02H0

–– must be much slower than the cosmological time scale
Williams et al. 2004; Babichev et al. 2011

GN (t) = Gcos(t) (“G” in Friedmann equation)

(Lunar Laser Ranging)



Gravity at short distances
Q� � �C�

C�

H2r

2

Two potentials do not coincide...

�� � c2
h

8�GT

�M

r2
, �� � 1

8�GT

�M

r2

�PPN =
1
c2
h



Case 3: G5X �= 0

Difficult to analyze a variety of possible solutions in detail...



Case 3: G5X �= 0

Difficult to analyze a variety of possible solutions in detail...

But, can show that inverse-square potentials,

�� � �� � 1
r2

cannot be a solution on the shortest scales



• On large scales (but well inside the horizon)

• On small scales

Evolution of density perturbations

is minimally coupled to matter
–– matter equations are not modified

�

�̈ + 2H �̇ � 4
3

�̇2

1 + �
= (1 + �)

�2

a2
�

�2

a2
� = 4�Ge��m�

Poisson equation
is modified

Ge� � GN (t)

Ge� � · · · (�= GN )

(messy expression)

De Felice, TK, Tsujikawa (2011)

(For an appropriate model choice
with               )G5X = 0



4. Summary



Summary
• Generic scalar-tensor theory contains Galileon-like non-

linear derivative interaction

• Vainshtein screening in the most general ST theory?

• Time-dependent G in cosmological background
… Time dependence is not screened

• constrained from observations and experiments

• Inverse-square law cannot be reproduced on the 
smallest scales if

• Application to the study of structure formation

G5X �= 0

Thank you!


