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Introduction and 
motivation

• The present cosmological observations 
indicate the accelerated expansion of the 
universe

• What is the origin of an accelerated 
expansion of the universe?

✓ Dark energy ?

✓ Cosmological constant ?

• Alternative : Modification of gravity

(from WMAP website)



Introduction and 
motivation

• Modified gravity theories
✓ f(R) gravity
✓ DGP
✓ (Nonlinear) massive gravity
✓ Galileon 

• No ghost instabilities

• Need to check consistency with observations

• We can test by using cosmological observations

• What is a powerful probe to distinguish modified gravity 
theories from ΛCDM?



Most general second-order 
scalar-tensor theory

Einstein-Hilbert term
L4 � (M2

Pl/2)R

K-essence term L2 � (@�)2, V (�)

Non-minimal derivative coupling
L5 � Gµ⌫rµ�r⌫�

(Germani et al. 2011;
 Gubitosi, Linder 2011)

Cubic galileon term

L3 � (@�)2⇤�

L2 = K(�, X)

L3 = �G3(�, X)⇤�

L4 = G4(�, X)R+G4,X [(⇤�)2 � (rµr⌫�)(rµr⌫�)]

L5 = G5(�, X)Gµ⌫(rµr⌫�)

� 1

6
G5,X


(⇤�)3 � 3(⇤�)(rµr⌫�) (rµr⌫�)

+ 2(rµr↵�)(r↵r��)(r�rµ�)

�

X = �(@�)2/2, GiX = @Gi/@X

✓  Horndeski found the most general Lagrangian whose EOM is second-order 
differential equation for φ and gμν  (also known as Generalized galileon)

Deffayet, Gao, Steer (2011), Kobayashi, Yamaguchi, Yokoyama, Prog. Theor. Phys. 126, 511 (2011), Horndeski, Int. J. Theor. Phys. 10,363 (1974)



Cosmology of Galileon

✓  Self-accelerating solution exists in various models

Free of ghost instability and Vainshtein mechanism
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The background evolution of 
Kinetic gravity braiding

RK and Kazuhiro Yamamoto, JCAP 04 (2011) 025

Toy Model 1



Kinetic Gravity Braiding

S =

Z
d4x

⇥
�g


M2

Pl

2
R+K(X)�G(X)⇤�+ Lm

�
✓ KGB model (Deffayet et al. 2010, Kobayashi et al. 2010)

J̇0 + 3HJ0 = 0

✓ Shift symmetry φ→φ+const ensures the existence of the Nether current

✓ J0 =0 is the attractor solution, which leads to a self-accelerating solution if 

(Deffayet et al. 2010)

→ Simple extension of the galileon model 

J0 = �̇
⇣
3�̇GXH �KX

⌘
/ 1/a3

L4 = M2
PlR/2

L5 = 0

KX

��
J0=0

< 0



Toy model of KGB
✓ Example (RK and Yamamoto 2011)

K(X) = �X

G(X) = MPl

✓
r2c
M2

Pl

X

◆n

✓ Choosing the attractor solution (J0=0), �̇ = KX/3GXH

✓
H

H0

◆2

= (1� ⌦0)

✓
H

H0

◆� 2
2n�1

+ ⌦0a
�3

behave like dark energy

rc : crossover scale (⇠ H�1
0 )

n : model parameter (n > 1/2)

Dvali-Turner’s Model 
(Dvali, Turner 2003)

(n >⇠ 100)

For n=1 

For large n 

Original galileon model (minimally coupled)

Cosmological constant model



Effective equation of 
state we↵ ⌘ p�/⇢�

we↵ ' �1

de Sitter expansion (scalar dominated era)
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Absence of ghost and 
stability condition

(a) > 0 (No ghostlike behavior)

c2s(a) > 0 (Stable)

�(t,x) ! �(t) + ��(t,x)

�S(2) =
1

2

Z
d4x

p
�g⇥(a)


˙�⇤
2 � c2s(a)

a2
(⌅i�⇤)

2

�✓ Quadratic action for the perturbed scalar field

c2s / 1/n

The sound speed of the perturbed 
scalar field becomes zero if n=∞ !

✓ The sound speed
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Cosmological perturbations in 
Kinetic gravity braiding

RK and Kazuhiro Yamamoto, JCAP 04 (2011) 025

Toy Model 1



For small n 
(well inside H0-1 and rs ) 

For large n 
(cs approaches zero)

Quasi-static approximation is valid

Quasi-static approximation is no longer valid

Cosmological 
perturbations 

ds

2 = �(1 + 2 )dt2 + a

2(t)(1 + 2�)�ijdx
i
dx

j

⇢(x, t) = ⇢(t)[1 + �(x, t)]

�(x, t) = �(t) + ��(x, t)

✓ Setup

Newtonian gauge

Scalar and matter perturbations



Quasi-static 
approximation (small n)

✓ Quasi-static approximation is valid for 

✓ Energy momentum conservation and modified Poisson equation
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Figure 8. The gravitational potential Ψ (upper left panel), the perturbation of the galileon filed
(upper right panel), and the growth factor divided by scale factor (lower panel) as a function of
redshift for the kinetic braiding model of n = 1 for k = 0.0003hMpc−1, 0.001hMpc−1, 0.01hMpc−1

with different initial conditions δφi/MPl = 0.1Ψi (solid curve) and δφi/MPl = 0 (dashed curve),
respectively. We adopt the initial condition ˙δφi = 0.

for the matter overdensity δ in linear theory reduces to

δ̈ + 2H δ̇ ! ∇2

a2
Ψ, (4.11)

where we used the fact δ = δρ/ρ ! ∆c (see also appendix A). From eqs. (4.4) and (4.5), we
have

−∇2

a2
Ψ ! −4πGρδ + 4πGGX φ̇2φ

∇2

a2
ϕ, (4.12)

where we introduced ϕ(x, t) = δφ(x, t)/φ(t). From eq. (4.7), we have

β(a)
∇2

a2
ϕ ! −4πG

GX φ̇2

φ
ρδ, (4.13)

for the galileon field perturbation. Combining (4.12) and (4.13), we obtain the modified
Poisson equation,

∇2

a2
Ψ ! 4πGeffρδ, (4.14)
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with different initial conditions δφi/MPl = 0.1Ψi (solid curve) and δφi/MPl = 0 (dashed curve),
respectively. We adopt the initial condition ˙δφi = 0.

for the matter overdensity δ in linear theory reduces to

δ̈ + 2H δ̇ ! ∇2

a2
Ψ, (4.11)

where we used the fact δ = δρ/ρ ! ∆c (see also appendix A). From eqs. (4.4) and (4.5), we
have

−∇2

a2
Ψ ! −4πGρδ + 4πGGX φ̇2φ

∇2

a2
ϕ, (4.12)

where we introduced ϕ(x, t) = δφ(x, t)/φ(t). From eq. (4.7), we have

β(a)
∇2

a2
ϕ ! −4πG

GX φ̇2

φ
ρδ, (4.13)

for the galileon field perturbation. Combining (4.12) and (4.13), we obtain the modified
Poisson equation,

∇2

a2
Ψ ! 4πGeffρδ, (4.14)
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Figure 9. Same figure as figure 8 but with δφi/MPl = Ψi.

where the effective gravitational constant is given by

Geff = G

[
1 + 4πG

G2
X φ̇4

β(a)

]

= G
2n+ 3nΩm(a)− Ωm(a)

Ωm(a)(5n− Ωm(a))
. (4.15)

Here, in the second line, we used the attractor condition (2.17). Then, the evolution equation
for the matter overdensity in linear theory can be written as

δ̈ + 2H δ̇ " 4πGeffρδ. (4.16)

The crucial difference between the kinetic braiding model and the scalar-tensor galileon the-
ory [33–35] is the absence of an effective anisotropic stress in the right-hand-side of eq. (4.5).
The effective gravitational constantGeff is nearly equal toG at early times and becomes larger
than G at late times. (See the dashed curve in the right panel of figure 17). The enhancement
of the effective gravitational constant leads to an enhancement of the growth factor of matter
density perturbations. Although the background evolution for large n approaches the ΛCDM
model, the growth history is different due to the time-dependent effective gravitational con-
stant. The left panel of figure 11 compares the evolution of the growth factor divided by the
scale factor, δ/a, which is normalized as 1 at early stage of the evolution. The growth factor
of the kinetic braiding model is larger than that of the ΛCDM model throughout its growth
history. In the right panel of figure 11, the linear growth rate f(a) = d ln δ/d ln a is plotted.

– 16 –

✓ Effective gravitational coupling

The growth is enhanced due to 
an additional scalar force



Full perturbation 
equation (large n)

2M2
Pl

h
(3H2 + 2Ḣ)⇥+H⇥̇� �̈� 3H�̇

i

= KX�X +GX

⇣
⇥̇3⇥̇� ⇥̇2�̈⇥+ 4⇥̇2⇥̈⇥� 2⇥̇⇥̈ ˙�⇥

⌘
�GXX ⇥̇2⇥̈�X

2M2
Pl

⇣
�̇�H⇥

⌘
= �KX ⇥̇�⇥�GX ⇥̇2

⇣
⇥̇⇥� ˙�⇥+ 3H�⇥

⌘
+ �q

⇥+ � = 0

�KX


3⇥̇�̇� ⇥̇⇥̇� 2(⇥̈+ 3H⇥̇)⇥+ �̈⇥+ 3H ˙�⇥� 1

a2
r2�⇥

�

� 3GXXXH⇥̇3⇥̈�X �GX


3⇥̇2�̈+ 6(⇥̈+ 3H⇥̇)⇥̇�̇� 9H⇥̇2⇥̇

� 12

⇢
(Ḣ + 3H2)⇥̇2 + 2H⇥̇⇥̈

�
⇥� ⇥̇2

a2
r2⇥+ 6H⇥̇�̈⇥

+ 6

⇢
H⇥̈+ (Ḣ + 3H2)⇥̇

�
˙�⇥� 2

a2
(⇥̈+ 2H⇥̇)r2�⇥

�

�GXX


3⇥̇3⇥̈�̇� 3H⇥̇4⇥̇� 3

⇢
8H⇥̇3⇥̈+ (Ḣ + 3H2)⇥̇4

�
⇥

+ 3H⇥̇3�̈⇥+ 3

⇢
5H⇥̇2⇥̈+ (Ḣ + 3H2)⇥̇3

�
˙�⇥� ⇥̇2⇥̈

a2
r2�⇥

�
= 0

2M2
Pl


�3H(�̇�H ) +

1

a2
r2�

�
= �KX�X �GX

 
3�̇3�̇� 12H�̇3 + 9H�̇2 ˙��� �̇2

a2
r2��

!

� 3GXXH�̇3�X � �⇢

Einstein equations

Scalar field equation



Full perturbation 
equation (large n)

✓ Taking the limit n→∞, the scalar field equation becomes

˙�X + 3H�X = 0

�X = ⇥̇ ˙�⇥� ⇥̇2�

�X = Const/a3

�X = 0

✓ One can find the decaying solution

✓ As long as the initial fluctuation of the scalar field is small, one can set

Scalar field does not contribute to the Einstein field equations

n→∞ limit corresponds to ΛCDM limit at both background and perturbations level

�⇢� = �p� = 0



Numerical results of 
Gravitational potential
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Numerical results 
of growth factor
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How can we distinguish scalar-tensor 
theories from the !CDM model?



Approach 1

Supernovae and CMB shift parameter

RK and Kazuhiro Yamamoto, JCAP 04 (2011) 025



Constraints from 
supernovae and CMB

✓  Supernovae (SCP Union 2)

• 557 supernovae

• Redshift   z < 1.4

• Distance modulus

✓  CMB shift parameter (WMAP 7 year) 

JCAP04(2011)025
n!5
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n!1
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Figure 2. The sound speed of perturbations for n = 1 (dashed curve), n = 2 (dash-dotted curve),
and n = 5 (dotted curve), from the top to bottom, as a function of scale factor.

apparent and absolute magnitude of the object, is given by

µ = 5 log

(

dL(z)

Mpc

)

+ 25, (3.1)

where dL(z) is the luminosity distance,

dL(z) = (1 + z)

∫ z

0
H−1(z′)dz′ = (1 + z)χ(z). (3.2)

The best-fit value of the present matter density Ω0 and n can be determined by χ2
SN defined by

χ2
SN =

557
∑

i=1

[

(µ(zi) − µobs(zi))2

σ2
obs(zi)

]

, (3.3)

where zi, µobs(zi), and σobs(zi) are the redshift, the distance modulus, and the error of the
i-th observed Ia SN. The left panel of figure 3 shows the confidence contour of ∆χ2

SN on
the plane Ω0 and n for the kinetic braiding model. We find the minimum of the χ2

SN is
respectively given by χ2

SN = 542.7 for ΛCDM model and χ2
SN = 543.3 for the kinetic braiding

model with n = 1. The kinetic braiding model with n = 1 requires the higher matter density
parameter. A similar result is found in a recent paper [43].

The Wilkinson microwave background anisotropy (WMAP) observation also provide a
constraint that relies on the distance to the last scattering surface. We here adopt the method
using the shift parameter R, the acoustic scale lA, and the redshift of the decoupling epoch
z∗ [73]. In the spatially flat universe, the acoustic scale and the shift parameter are written
lA = πχ(z∗)/rs(z∗) and R =

√

Ω0H2
0χ(z∗), respectively, where χ(z) is the comoving distance

and rs is the comoving sound horizon at the decoupling epoch [74]. Then, we define the chi
squared (see [4, 43] for details)

χ2
CMB =

∑

i,j

(xi − di)C−1
ij (xj − dj), (3.4)

– 8 –

2 Yan Gong, Xuelei Chen: Cosmological Constraints on Unparticle Dark Matter

as the sole dark matter, and the set of cosmological pa-
rameters θ is {Ωb0, ΩU0, dU , h0 }. In the second case,
denoted by ΛCUDM, we consider the more general case
where the unmatter is not the only source of dark mat-
ter. We then constrain the amount of unmatter if it does
exist. The cosmological parameters set θ in this case is
{Ωm0, ΩU0, dU , h0}. We then use a Markov Monte Carlo
Chain method to make the global fitting and constraints.
For details of our MCMC code we refer the readers to
Ref. [27].

We consider three observational constraints. The first
one is luminosity distance moduli to type Ia supernovae
(SNIa). The second is the baryon acoustic oscillation (BAO)
feature in large scale structure as measured by the Sloan
Digital Sky Survey (SDSS) and the Two Degree Field
Galaxy Redshift Survey (2dFGRS). The last one is the so
called shift parameter[28,29], which is essentially a mea-
sure of the distance to the last scattering surface of the
cosmic microwave background (CMB), as measured by the
WMAP three year observation [30]. All of these provide
constraints on the global expansion history of the universe.

2 Methods

The cosmic expansion rate H(z) is given by

H2(z) = H2
0 Ω(z; θ), (5)

where for ΛUDM:

Ω(z; θ) = Ωb0(1 + z)3 + ΩΛ0 + Ωr0(1 + z)4

+ΩU0(1 + z)3(1+wU ) (6)

and for ΛCUDM:

Ω(z; θ) = Ωm0
(1 + z)3 + ΩΛ0 + Ωr0(1 + z)4

+ΩU0(1 + z)3(1+wU ); (7)

with ΩΛ0 = 1−Ωm0−ΩU0−Ωr0. Here, Ωm0, Ωr0, ΩΛ0, ΩU0

are the relative abundance of matter, radiation, the cos-
mological constant, and unmatter respectively. Of course,
for the ΛUDM model, Ωm0 = Ωb0.

Supernova constraint: the luminosity distance to a
supernova is given by

dL(z; θ) = (1 + z)

∫ z

0

cdz′

H(z′)
. (8)

and the distance moduli is

µth(z) = 5 log10 dL(z) + 25, (9)

The χ2 for the SNIa data is

χ2
SN(θ) =

N
∑

i=1

(µobs(zi) − µth(zi))2

σ2
i

, (10)

where µobs(zi) and σi are the observed value and the cor-
responding error for each supernova. We use a data set of

182 high-quality SNIa [27] selected from the Gold06 [32],
SNLS [33] and ESSENCE [34] samples.

CMB constraint: the CMB shift parameter R [28]
denotes the positions of the acoustic peaks in the angular
power spectrum of CMB, and takes the form as

R =
√

Ωm0

∫ zCMB

0

dz′

H(z′)/H0
(11)

The WMAP3 data gives R = 1.70 ± 0.03 [29], thus we
have

χ2
R =

(

R − 1.70

0.03

)2

. (12)

BAO constraint: we use the quantity rs/Dv which is
constrained by the BAO signature in SDSS (at z = 0.35)
and 2dFGRS (at z = 0.2) data [35,36]: rs/Dv(0.2) =
0.1980 ± 0.0058 and rs/Dv(0.35) = 0.1094 ± 0.0033, with
a correlation coefficient of 0.39. Here rs is the comoving
sound horizon size at the epoch of decoupling, and Dv is
the effective distance defined in [31]. we do not use the
parameter A which is extracted from the BAO measure-
ments of the SDSS, as its definition applies to the ΛCDM
model specifically, and may not be applicable in the pres-
ence of unmatter models [37].

For the combined analysis,

χ2 = χ2
SN + χ2

R + χ2
BAO. (13)

We employ the Markov Chain Monte Carlo (MCMC)
technique to calculate the posterior probability distribu-
tions function of the parameters. The Metropolis-Hastings
algorithm with uniform priors is used to generate the sam-
ple, and the priors are taken as the following: Ωb0 ∈ (0, 0.1),
Ωm0 ∈ (0, 1), ΩU0 ∈ (0, 1), dU ∈ (0, 105) and h0 ∈ (0.4, 0.9).
The energy density of all components are assumed to be
positive, ΩU0 ∈ (0, 1 − Ωb0/Ωm0 − Ωr0) is set so that
ΩΛ0 = 1 − ΩU0 − Ωb0/Ωm0 − Ωr0 ≥ 0. For each of the
two models (ΛUDM and ΛCUDM) we generate six chains,
and about ten thousands points are sampled in each chain.
After thinning the chains, we merge them into one chain
which consists of about 10000 points.

3 Results

First we consider the constraints derived purely from the
SNIa data. For constraining the unmatter model, this is
the most reliable one, as it is based only on the global
expansion history, which can be calculated exactly for the
given parameter set.

In Fig. 1 we plot the constraint on ΩU and dU in the
ΛUDM model after marginalizing the other parameters.
We found that practically all values of dU are allowed. At
large values of dU , the central value of ΩU is between 0.15
and 0.25. This is what we would have expected, since for
large value of dU the behavior of the unparticle gas is very
similar to that of the cold dark matter, and for ΛCDM the
best fit is centered in the same region. At smaller values
of dU , the contours curved to smaller ΩU .
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Galaxy distribution

(from SDSS website)
(Percival et al. 2010)

h�(t,k)�(t,k0)⇤i = Pm(k, a)�(3)(k� k0)

✓ Matter power spectrum



Redshift space 
distortion

Anisotropy of matter power spectra could be powerful tool to constrain 
the model parameter as well as the cosmological parameters... 

Kaiser effect Finger of God effect

✓ Observed matter power spectrum is distorted by these effects in redshift space



✓ Power spectrum in redshift space 

✓ Multipole expansion 

Ps(k) = (1 + �µ2)2P (k) � = f/b

f(a) =
d lnD1

d ln a

µ =
~k · ẑ
|~k|

✓ The ratio of the quadrupole to the monopole

Ps(k, µ) =
X

l=0,2,4,...

Pl(k)Ll(µ)(2l + 1)

P2(k)

P0(k)
=

4
3� + 4

7�

1 + 2
3� + 1

5�
2

Degeneracy of bias and growth can be broken by using both P0 and P2

Redshift space 
distortion



Constraints from 
matter power spectrum

✓ SDSS LRG sample data release 7

Survey area                         7150 deg2

Number of galaxies           100157 LRG
Redshift range                    0.16 < z < 0.47

✓ Marginalizing parameters

✓ Unknown parameters

JCAP04(2011)025

when ϕ > βa2/k2GXφ. From eq. (4.13), we may estimate ϕ ∼ a2H2GX φ̇2δ/k2βφ, by using
the relation, H2 " ρm/3M2

P l . Combining these relations, the non-linear terms become
dominant when δ > β2/H2G2

X φ̇2 ∼ O(1). Therefore, for δ > 1, we need to take into account
the non-linear terms, and these terms play an important role in the Vainshtein mechanism
as we will see in section 6.

In the limit of n = ∞, the linear cosmological perturbation approaches the ΛCDM
model. It would be interesting to clarify what is the nature of the gravity in the model
with large n on the small scales where the Vainshtein mechanism works in the static limit.
However, this is outside of the scope of the present paper, and we only consider the case
n ! 10 in the latter part of this paper.

5 Cosmological constraints from the redshift-space distortion

5.1 Current constraint

The multipole power spectrum is useful for measuring the redshift-space distortion, which
plays a vital role of testing gravity on the scales of cosmology [78–83]. In this section,
utilizing the monopole and quadrupole spectra from the SDSS LRG sample of the data
release 7 [31, 84], we investigate a constraint on the kinetic braiding model. The multipole
power spectrum is defined by

P (k, µ) =
∑

l=0,2,4,...

Pl(k)Ll(µ)(2l + 1), (5.1)

where P (k, µ) the redshift-space power spectrum, Ll(µ) are the Legendre polynomials, µ is
the directional cosine between the line of sight direction and the wavenumber vector. The
monopole P0(k) represents the angular averaged power spectrum, and P2(k) is the quadrupole
spectrum which gives the leading anisotropic contribution. For the theoretical modeling of
the redshift-space power spectrum, we adopt the fitting formulas developed by Jennings et
al. [85] and Peacock and Dodds [86], with the transfer function by Eisenstein and Hu [87].
We consider the galaxy redshift-space power spectrum [88],

Pgal(k, µ) =
(

b2(k)Pδδ(k) + 2fb(k)Pδθ(k)µ2 + f2Pθθ(k)µ4
)

e−(fkµσv)2 , (5.2)

where Pδδ(k) is the nonlinear matter power spectrum, Pθθ(k) is the power spectrum of the
velocity divergence, and Pδθ(k) is the cross power spectrum of matter and the velocity diver-
gence, b(k) is the clustering bias, and σv is the velocity dispersion. Jennings et al. proposed
a fitting formula for the redshift-space power spectrum of the form (5.2), assuming b(k) = 1.
The fitting formula relates the nonlinear matter power spectrum Pδδ(k) to Pδθ(k) and Pθθ(k).
Although the accuracy of the fitting formula for the kinetic braiding modified model is not
verified, we assume its validity, and use it in this section. Also we consider the scale dependent
bias in the form,

b(k) = b0 + b1

(

k

0.1hMpc−1

)b2

, (5.3)

where b0, b1, and b2 are the free parameters. The multipole power spectrum is measured
assuming the fiducial distance-redshift relation s = s(z) of the spatially flat ΛCDM model
with Ω0=0.28. In order to compare the theoretical prediction of the kinetic braiding model

– 20 –

✓ Power spectrum in redshift space with non-linearity

n, ⌦0, A, b, �v

⌦0, A, b, �v



Constraints from 
matter power spectrum
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✓ In general, 

• Ω0 can be determined by the baryon 
acoustic oscillation

• P0 determines the combination of bias 
and growth

•  P2 determines growth 

The error bar is still large to distinguish 
the model from the LCDM model

✓However, 

Even if we combine the constrains from 
the standard ruler and power spectrum,  

small n is still allowed
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LSS-ISW cross-correlation
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Integrated Sachs-Wolfe 
effect

✓  CMB contains lots of information and useful 
to determine cosmological parameters

(Komatsu  et  al.  2010)

(from WMAP website)



✓ ISW term in CMB anisotropy
✓
�T (⇤�)

T

◆

ISW

=

Z ⌘0

⌘d

d⇥[⇤0(⇥,x) � ⇥0(⇥,x)]

Blueshift

Redshift

Potential decays

Potential grows

NO ISW

Potential is constant

Kinetic gravity braiding (small n)

!CDM model

Einstein de-Sitter universe

Integrated Sachs-Wolfe 
effect



Integrated Sachs-Wolfe 
effect
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(Hu & Scaranton 04)

✓ ISW information         ~10% of the primary CMB anisotropy

✓ Cosmic variance

LSS-ISW cross-correlation can 
extract information of ISW effect ! 

(Crittenden &Turok ‘95 )

ISW in CMB power 
spectrum is dominated 

by cosmic variance !



LSS-ISW 
cross-correlation

C` =
3⌦0H

2
0

(` + 1/2)2

Z
dzH(z)W(z)

D1(z)

D2
1(z0)

dUk(z)

dz
b(z, k)P (k)

����
k=(`+1/2)/�

Uk(a) =
Ge↵(a)

G

D1(a)

a

✓ LSS-ISW cross-correlation function (CCF)

Temperature anisotropy Galaxy distribution
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Fixed cosmological 
parameters

✓ Fixed cosmological parameters (WMAP 7year value)

h = 0.702

⌦b = 0.0451

⌦0h
2 = 0.1338

ns = 0.966

�2
R = 2.42⇥ 10�9 at k0 = 0.002Mpc�1

✓ Scale independent bias for the ΛCDM model (Giannantonio et al. 2008) 5

2MASS SDSS galaxies SDSS LGR NVSS HEAO QSO

b 1.4 1.0 1.8 1.5 1.06 2.3

TABLE I: The bias b for the LCDM model.
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FIG. 1: The selection functions W (z) of each catalogue (2MASS, SDSS galaxies, LRG, NVSS, HEAO, QSO) [26].
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FIG. 2: The cross correlation function

determined by the auto-correlation function of galaxy distribution

b = b(⇤CDM)D
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1

D1
✓ Rescaled bias

✓ Cross-correlation data  Giannantonio et al. 2008



Constraints from Integrated 
Sachs-Wolfe effect

Data from Giannantonio et al. ’08

3
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FIG. 1: The cross correlation function theoritically calculated
by using Eq. (11) and the data obtained in [26]. Eash curve
shows the cross correlation function of ΛCDM model, KGB
model with n = 1, n = 10, n = 100, n = 1000, and n = 5000,
from the top to bottom. The cosmological parameters are the
values of WMAP 7 year and bias is also fixed at the value of
ΛCDM model.

cross correlation function for the kinetic gravity braid-
ing model with large n approaches that for the ΛCDM
model. This is because the sound speed of the galileon
field becomes zero in the limit of n → ∞ [17]. Another
important feature in the Fig. 1 is the anti-correlation in
the kinetic gravity braiding model with small n. The
enhancement of the effective gravitational constant Geff

leads to the growth of the gravitational potential. Thre-
fore, the sign of the function dUk(z)/dz would change
differently from the ΛCDM model. On the other hand,
measurements of the cross correlation function in each
catalog indicate a positive cross-correlation function. Al-
though the values of the galaxy bias are for the ΛCDM
model, the background evolution for the kinetic gravity
braiding model with n > 100 is almost identical to the
ΛCDM model. In addition, the growth of density pertur-
bations is similar for n > 1000 and we expect that the
power spectrum is also identical to the ΛCDM model for
n > 1000. Therefore, the kinetic gravity braiding model
with large n approximately has the same value of the
galaxy bias for the ΛCDM model. For small n, which
corresponds to n < 100, the cross-correlation is negative,
therefore it does not matter when constraining the model
parameter because it is already ruled out.
The total chisquared is given by

χ2
total =

∑

i,j

(cobsi − ctheoi )C−1
ij (cobsj − ctheoj ), (14)

where cobsi is the cross-correlation function obtained from
observations, ctheoi is the cross-correlation function theo-
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FIG. 2: χ2 for the six galaxy catalogues as a function of the
model paramter. The dashed curve and solid curve are the
1σ and 2σ confidence levels, respectively.

retically predicted from Eq. (11), and C−1
ij is the inverse

of the covariance matrix obtained from [26]. Fig. 2 shows
the χ2 for the six galaxy catalogues as a function of the
model paramter. The best-fit value for the model param-
eter n is log n = 4.1+0.9

−0.4 and χ2
total = 49. As we expected

from Fig. 1, the kinetic gravity braiding model with small
n is obviously ruled out, and the kinetic gravity braiding
model with large n is favored by observations.

In addition to the KGB model, we present the obser-
vational contraints on the parametrized model, whose ef-
fective gravitational constant is given by Eq. (8). Fig. 3
shows Contour of ∆χ2 on the g1 − g2 plane. We
used the cosmological parameters from WMAP 7 year
[31], and the background expansion are assumed to be
the ΛCDM model. For each parameter, we assume
that the galaxy bias is determined by the amplitude of
the power spectrum of the matter distribution, b(i) =

D1(z
(i)
∗ )/D(ΛCDM)

1 (z(i)∗ ), where z(i)∗ is the mean redshift
of the i-th catalog. The result shows that the deviation
of effective gravitational constant from the Newton’s con-
stant has to be very small, as expected in [30]. The stan-
dard galileon model can be expressed as g1 ∼ 0.6 − 1.0
and g2 = 3 − 4 and obviously these paramter range is
ruled out.

CONCLUSION

In this paper, we focus on observational constrains
on the kinetic gravity braiding model from the cross-
correlation function betwween the galaxy distribution
and the Integrated Sachs-Wolfe effect. We found that the
correlation function of the kinetic gravity braiding model
with small n has a negative and these behavior is not fa-

(95% C.L.)

n=1
n=10

n=100
n=1000

ΛCDM
n=5000

n >⇠ 103
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✓Most general second-order scalar-tensor theory
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✓  Quadratic action for a tensor mode

where K, G3, G4, and G5 are arbitrary functions of the scalar field φ and the kinetic term
X ≡ −gµν∇µφ∇νφ/2, Giφ and GiX stands for ∂Gi/∂φ and ∂Gi/∂X, respectively, and Lm is
the matter Lagrangian. We assume that matter is minimally coupled to gravity. Note that
for the case, G4 = M2

Pl/2, the Lagrangian L4 reproduces the Einstein-Hilbert term.
We consider the tensor perturbations in the most general second-order scalar-tensor

theory on a cosmological background, and briefly review the results in derived in [36]. We
briefly review the tensor perturbations in the most general second-order scalar-tensor theory,
derived in [36]. The quadratic action for the tensor perturbations can be written as

S(2)
T =

1

8

∫
dtd3xa3

[
GT ḣ

2
ij −

FT

a2
(#∇hij)

2

]
, (2.3)

where

FT ≡ 2
[
G4 −X

(
φ̈G5X +G5φ

)]
, (2.4)

GT ≡ 2
[
G4 − 2XG4X −X

(
Hφ̇G5X −G5φ

)]
. (2.5)

Here an overdot denotes differentiation with respect to t, and H = ȧ/a is the hubble param-
eter. We find the propagation speed of the tensor perturbations,

c2T ≡ FT

GT
. (2.6)

When G4 = G4(φ) and G5 = 0, the propagation speed of gravitational waves is equal to the
speed of light. On the other hand, the propagation speed of gravitational waves depends
on the cosmological background in the presence of G5 or G4 being dependent on X. If
the propagation speed of gravitational waves is less than the speed of light, it is tightly
constrained from gravitational Cherenkov radiation.

3 Gravitational Cherenkov radiation in an expanding universe

In this section, we derive the gravitational Cherenkov radiation in a cosmological background.
For simplicity, we consider a complex scalar field with the action

Sm =

∫
d4x

√
−g
[
−gµν∂µΨ

∗∂νΨ−m2Ψ∗Ψ− ξRΨ∗Ψ
]
. (3.1)

Here we assume the conformal coupling with spacetime curvature ξ = 1/6, for simplicity, but
this term can be neglected as long as we focus on the subhorizon scales, p/a,m % H, where
p is the comoving momentum. The free part of Ψ can be quantized as

Ψ̂(η,x) =
1

a

∫
d3p

(2π)3/2

[
b̂pψp(η)e

ip·x + ĉ†pψ
∗
p(η)e

−ip·x
]
, (3.2)

where η is the conformal time, b̂p and ĉ†p are the annihilation and creation operators of the

particle and anti-particle, respectively, which satisfy the commutation relations [b̂p, b̂
†
p′ ] =

δ(p− p′), [ĉp, ĉ
†
p′ ] = δ(p− p′), and the mode function obeys

(
d2

dη2
+ p2 +m2a2

)
ψp(η) = 0. (3.3)
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where η is the conformal time, b̂p and ĉ†p are the annihilation and creation operators of the

particle and anti-particle, respectively, which satisfy the commutation relations [b̂p, b̂
†
p′ ] =

δ(p− p′), [ĉp, ĉ
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✓  Sound speed of graviton

For KGB model, c2T = 1

Sound speed of  
graviton in MGST

FT ⌘ 2
h
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⇣
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⌘i

GT ⌘ 2
h
G4�2XG4X �X

⇣
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Kobayashi, Yamaguchi, Yokoyama, Prog. Theor. Phys. 126, 511 (2011),



Gravitational 
Cherenkov radiation

✓  Highest energy cosmic ray (p ~ 3×1011 GeV) can provide us the lower bound on 
the sound speed of graviton

particle

graviton

particle

Moore and Nelson (2001)

✓  If the sound speed of graviton is smaller than the speed of light, particle should 
emit graviton through the similar process to Cherenkov radiation



Gravitational 
Cherenkov radiation

✓  Consider the complex scalar in a FRW background

where K, G3, G4, and G5 are arbitrary functions of the scalar field φ and the kinetic term
X ≡ −gµν∇µφ∇νφ/2, Giφ and GiX stands for ∂Gi/∂φ and ∂Gi/∂X, respectively, and Lm is
the matter Lagrangian. We assume that matter is minimally coupled to gravity. Note that
for the case, G4 = M2

Pl/2, the Lagrangian L4 reproduces the Einstein-Hilbert term.
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3 Gravitational Cherenkov radiation in an expanding universe

In this section, we derive the gravitational Cherenkov radiation in a cosmological background.
For simplicity, we consider a complex scalar field with the action

Sm =

∫
d4x

√
−g
[
−gµν∂µΨ

∗∂νΨ−m2Ψ∗Ψ− ξRΨ∗Ψ
]
. (3.1)

Here we assume the conformal coupling with spacetime curvature ξ = 1/6, for simplicity, but
this term can be neglected as long as we focus on the subhorizon scales, p/a,m % H, where
p is the comoving momentum. The free part of Ψ can be quantized as

Ψ̂(η,x) =
1

a

∫
d3p

(2π)3/2

[
b̂pψp(η)e

ip·x + ĉ†pψ
∗
p(η)e

−ip·x
]
, (3.2)

where η is the conformal time, b̂p and ĉ†p are the annihilation and creation operators of the

particle and anti-particle, respectively, which satisfy the commutation relations [b̂p, b̂
†
p′ ] =

δ(p− p′), [ĉp, ĉ
†
p′ ] = δ(p− p′), and the mode function obeys

(
d2

dη2
+ p2 +m2a2

)
ψp(η) = 0. (3.3)
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GT ḣ

2
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FT
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(#∇hij)

2

]
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G4 −X
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G4 − 2XG4X −X

(
Hφ̇G5X −G5φ
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. (2.5)
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)
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The WKB approximate solution is given by (e.g., [45])

ψp(η) =
1√
2Ωp

exp

[
−i

∫ η

ηin

Ωp(η
′)dη′

]
(3.4)

with Ωp(η) =
√

p2 +m2a2. The WKB approximation is valid for

Ω2
p "

∣∣∣∣
1

Ωp

d2Ωp

dη2
− 3

2

1

Ω2
p

(
dΩp

dη

)2∣∣∣∣
2

, (3.5)

which can be satisfied as long as p/a,m " H.
On the other hand, the action of the graviton is given by eq. (2.3), then, we have the

quantized graviton field

ĥµν =
1

a

√
2

GT

∑

λ

∫
d3k

(2π)3/2

[
ε(λ)µν âkhk(η)e

ik·x + ε(λ)µν â
†
kh

∗
k(η)e

−ik·x
]
, (3.6)

where ε(λ)µν is the polarization tensor, â†k and âk are the creation and annihilation operators,

which satisfy the commutation relation [âk, â
†
k′ ] = δ(k− k′), and the mode function satisfies

(
d2

dη2
+ c2sk

2 − a′′

a

)
hk(η) = 0. (3.7)

For the case cs ∼ O(1) and csk/a " H, we may write

hk(η) =
1√
2ωk

exp

[
−i

∫ η

ηin

ωk(η
′)dη′

]
, (3.8)

where we defined ωk = csk, and the approximate solution is valid as long as csk/a " H. The
interaction part of the action (3.1) is given by

SI = −
∫

dtd3xahij∂iΨ∂jΨ
∗

= −
∫

dηd3xhij∂iψ∂jψ
∗, (3.9)

where we defined ψ = aΨ, and the interaction Hamiltonian is

HI = a

∫
d3xhij∂iΨ∂jΨ

∗. (3.10)

In order to evaluate the gravitational Cherenkov radiation, we adopt the method de-
veloped in [46, 47]. Based on the in-in formalism [48], the lowest order contribution is given
by

〈Q(t)〉 = i2
∫ t

tin

dt2

∫ t2

tin

dt1 〈[HI(t1), [HI(t2), Q]]〉 . (3.11)

We consider the expectation value of the number operator and the initial state with the one
particle state with the initial momentum, i.e., b̂†pin |0〉. Then the lowest-order contribution of
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[ĉp, ĉ
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✓  In-in formalism
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veloped in [46, 47]. Based on the in-in formalism [48], the lowest order contribution is given
by

〈Q(t)〉 = i2
∫ t

tin

dt2

∫ t2

tin

dt1 〈[HI(t1), [HI(t2), Q]]〉 . (3.11)

We consider the expectation value of the number operator and the initial state with the one
particle state with the initial momentum, i.e., b̂†pin |0〉. Then the lowest-order contribution of
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Figure 1. Feynman diagram for the process

the process so that one graviton with the momentum k is emitted from the massive particle
with the initial momentum pin, as shown in fig. 1, is written as [49]

〈
â†(λ)k â(λ)k

〉
= 2!

∫ t

tin

dt2

∫ t2

tin

dt1
〈
HI(t1)â

†(λ)
k â(λ)k HI(t2)

〉
. (3.12)

Then, the total radiation energy from the scalar particle can be estimated as E =
∑

λ

∑
k(ωk/a)〈

â†(λ)k â(λ)k

〉
, which leads to

E =
∑

λ

∫
d3k

(2π)3
ωk

a

∣∣∣∣
∫ η

ηin

dη1
1

a(η1)

√
2

GT
hk(η1)ψpf (η1)ψ

∗
pin

(η1)εijp
i
inp

j
f

∣∣∣∣
2

, (3.13)

where pf + k = pin (pif + ki = piin). With the use of the relation
∑

λ

∣∣εijpiinp
j
f

∣∣2 = p4in sin
4 θ,

we have

E =

∫
d3k

(2π)3
ωk

a
p4in sin

4 θ

∣∣∣∣
∫ η

ηin

dη1
1

a(η1)

√
2

GT
hk(η1)ψpf (η1)ψ

∗
pin

(η1)

∣∣∣∣
2

.

(3.14)

We are now interested in the subhorizon scales, k/a, p/a, m, csk/a " H, and the situation
so that the scale factor a is constant, then we can approximate as

∫ η

ηin

dη1
1

a(η1)

√
2

GT
hk(η1)ψpf (η1)ψ

∗
pin

(η1)

# 1

a

√
2

GT

1√
2ωk

1√
2Ωpin

1√
2Ωpf

∫ η

ηin

dη1 exp [i(Ωin − Ωf − ωk)(η1 − ηini)] . (3.15)

Then the total radiation energy eq. (3.14) reduces to

E # 1

4GTa3

∫
d3k

(2π)3
p4in sin

4 θ

ΩfΩin

2πT

a
δ(Ωin − Ωf − ωk), (3.16)

Here we assumed the long time duration of the integration,
∣∣∣∣
∫ η

ηin

dη1 exp [i(Ωin − Ωf − ωk)(η1 − ηini)]

∣∣∣∣
2

# 2πT

a
δ(Ωin − Ωf − ωk), (3.17)
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✓  Gubitosi and Linder model (Gubitosi and Linder 2011)

Toy Model 2

S =

Z
d

4
x

p
�g


M

2
Pl

2
R+X +

�

M

2
Pl

G

µ⌫rµ�rµ�+ Lm[gµ⌫ , ]

�

K = X

G3 = 0

G4 = M2
Pl/2

G5 = ���/M2
Pl

✓  Friedmann equation

1 = ⌦m + ⌦�, where ⌦� =
X

3M2
PlH

2
(1 + 18C(z)) and C(z) ⌘ �H2

M2
Pl

✓  Condition for existence of self-accelerating solution and avoiding the ghost-
instability

� 1

18
< C(z = 0) < � 1

30
� is always negative

✓Sound speed of graviton

c2T =
M2

Pl + 2�X/M2
Pl

M2
Pl � 2�X/M2

Pl

< 1

Inconsistent with the constraint from the gravitational Cherenkov radiation...



✓  Extended galileon model (De Felice and Tsujikawa 2011)

Toy Model 3

The condition for avoiding ghosts of the tensor perturbations, GT > 0, is δ > Ωφ(Ωφ − 3),
which is automatically satisfied, while the condition for avoiding instability c2T ≥ 0 is

δ ≥
Ωφ

Ωφ + 3
. (4.6)

Therefore, δ > 0 is required for avoiding ghost-instability. Thus the theoretically allowed
parameter range is

0 < δ <
2

5
, (4.7)

which is equivalent with

− 1

18
< C(z = 0) < − 1

30
. (4.8)

The propagation speed of gravitational waves in terms of Ωφ is rephrased as

c2T =
(3 + Ωφ)δ − Ωφ

(3− Ωφ)δ + Ωφ
. (4.9)

The constraints from gravitational Cherenkov radiation cT > 1 − ε, where ε = 2 × 10−15,
reads δ > 1−O(ε) from eq. (4.9), which contradicts with the condition (4.7). Equivalently,
from eqs. (4.3) and (4.8), λ is always negative, therefore, the propagation speed of gravita-
tional waves is always smaller than unity from eq. (4.5). Thus this purely kinetic coupled
gravity is inconsistent with the constraint from the gravitational Cherenkov radiation for any
theoretically allowed parameter λ.

5 Extended galileon model

In this section, we consider the model proposed by De Felice and Tsujikawa [44], which is an
extension of the covariant galileon model [52]. In this model, the arbitrary functions has the
following form,

K = −c2M
4(1−p2)
2 Xp2 ,

G3 = c3M
1−4p3
3 Xp3 ,

G4 =
1

2
M2

pl − c4M
2−4p4
4 Xp4 ,

G5 = 3c5M
−(1+4p5)
5 Xp5 , (5.1)

where ci and pi are the model parameters and Mi are constants with dimensions of mass.
We impose the conditions that the tracker solution is characterized by Hφ̇2q = const and
the energy density of the scalar field is proportional to φ̇2p. These conditions enable us to
reduce the model parameters, which is given by p2 = p, p3 = p + (2q − 1)/2, p4 = p + 2q,
and p5 = p+ (6q− 1)/2 1. Note that the covariant Galileon model corresponds to p = 1 and
q = 1/2.

1Kimura and Yamamoto considered the case : p = 1, q = n− 1/2, c4 = 0, and c5 = 0 [53].
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✓  Friedmann equation in the case of the attractor solution

density parameter of the scalar field is simply given by Ωφ = r2, satisfying the constraint
1 = Ωφ + Ωm + Ωr. Integrating these equations yields the following algebraic equations,

r2 = b1a
4(1+s)Ωr

1+s , (5.8)

b1a
4(1+s)Ωr

1+s = 1− Ωr(1− b2a) , (5.9)

where the integration constants are given by

b1 =
1− Ωm0 − Ωr0

Ω1+s
r0

, b2 = −Ωm0

Ωr0
, (5.10)

and Ωm0 and Ωr0 are the matter and radiation density parameter at present, respectively.
To see how the Friedmann equation is modified, we rewrite the algebraic equation (5.9) in
terms of the hubble parameter H, then we find

(
H

H0

)2

= (1− Ωm0 − Ωr0)

(
H

H0

)−2s

+ Ωm0a
−3 + Ωr0a

−4. (5.11)

This modified Friedmann equation is known as the Dvali-Turner model [54]. The authors in
[53] placed the observational constraints on this modified Friedmann equation (5.11) in the
special case p = 1 using type Ia supernovae and the CMB shift parameter and showed that
the model parameter s has to be small, s " 1, in order to be consistent with cosmological
observations2.

5.2 Conditions

In this subsection, we summarize the theoretically allowed parameter space in the extended
galileon model, discussed in [44], and show that the constraint from gravitational Cherenkov
radiation is crucial. To avoid ghost-instabilities, we must impose the conditions, GT > 0,
c2T > 0, GS > 0, and c2S > 0 in the history of the universe. The coefficients in the tensor
and scalar perturbation equations in terms of r1, r2, Ωr, and the model parameters are listed
in appendix B. We find that the propagation speed of gravitational waves along the tracker
r1 = 1 is written

c2T =
2(1− 2p− 4q)(2q + pr2) + 3α(2q + pr2)r2 − 3β(1− 2p− 4q)(3− 3r2 + Ωr)r2

(1− 2p− 4q)[2 + 3(α− 2β)r2](2q + pr2)
.

(5.12)

Note that eq. (5.12) reduces c2T = 1 when α = β = 0, which correspond to G4 = M2
Pl/2

and G5 = 0. We further impose no-instability condition at r2 = r2,min, where a minimum
of propagation speed of gravitational waves c2T is located. Setting r1 = 1 and Ωr # 0, the
minimum of c2T is given by eq.(5.12) at r2 = r2,min,

r2,min =

[
2(3 + 2p)(1− 2p− 4q)q β − 8p q(p+ 2q)α±

√
3Γ1

]
/Γ2, (5.13)

2 Observational constraints on eq. (5.11) from type Ia supernovae, cosmic microwave background, and
baryon acoustic oscillations including the cosmic curvature K in the context of the extended galileon model
has been recently studied by De Felice and Tsujikawa [55]. They found that the parameter s is constrained
to be s = 0.034+0.327

−0.034 (95% CL) in the flat case K = 0.
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Dvali-Turner’s Model
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✓  Allowed parameter space
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Summary

• Constraints from the standard ruler is not a powerful tool to 
constrain some modified gravity model, because the background 
evolution is almost same as the ΛCDM model.

• Constraints from LSS-ISW cross correlation could be a powerful 
probe for the model, whose effective gravitational coupling Geff is 
strongly enhanced.

• For modified gravity model, whose sound speed of graviton is 
smaller than the speed of light, the constraints from gravitational 
Cherenkov radiation would be a powerful probe.


