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Introduction



Basics of massive gravity (Notation)

Potential for the graviton: 

Φa : Stuckelberg fields Unitary gauge:

de Rham & Gabadadze 2010
de Rham, Gabadadze, Tolley 2011



Absence of Flat Friedmann Universe
D’Amico et al. 2011

Homogeneous & isotropic solution:

 real metric: 

 imposes the same symmetry on Stuckelberg fields 



Absence of Flat Friedmann Universe II

dot{f} appears only linearly !!

The scale factor cannot evolve !!

There is no homogeneous and isotropic flat Universe.

Integration by part



What can we do ?

 Consider open Friedmann Universe instead of flat one.

 Abandon imposing the same symmetry on the Stuckelberg field.

Gumrukcuoglu, Lin and Mukohyama 2011.

Our work by use of Painleve-Gullstrand meric

Note that the same idea was done in D’Amico et al. 2011
& Gratia, Hu, and Wyman 2012 as well.



Painleve-Gullstrand meric



Spherically symmetric vacuum solution 
in (massless) GR

Schwarzschild metric:

This metric has a coordinate singularity at the horizon r = 2M.

In GR, this is not a real singularity and 
can be removed by coordinate transformation.



Danger of coordinate singularity in Massive Gravity
Gruzinov & Mirbabayi 2011
Berezhiani et al. 2012

New invariant in Massive Gravity:

This quantity is invariant under coordinate transformation, namely, 
a scalar quantity and should have the same position as

In the unitary gauge: 

Any inverse metric with divergence leads to singularity in this invariant.

(Though such a singularity does not affect the geodesic motion, 
it would cause a problem for perturbations around classical solutions
because inverse metric could change its sign across the singularity.)



Danger of coordinate singularity in Massive Gravity II
Gruzinov & Mirbabayi 2011
Berezhiani et al. 2012

The Schwarzschild like metric in Massive Gravity
(Schwarzschild, Schwarzschild-De Sitter, Reissner-Nordstrom…)
can be dangerous.

Needs the metric without coordinate singularity

Painleve-Gullstrand meric !!

 BH solutions in PG metric:

Berezhiani, Chkareuli, de Rham, Gabadadze, Tolley 2011

 Cosmological solutions in PG metric:

our work



Painleve-Gullstrand metric
Painleve 1922, Gullstrand 1922,
Kanai, Siino, Hosoya 2011

Merit of PG metric:

 includes an off-diagonal and spatially flat elements, which leads to
no coordinate singularity (except real singularity at the origin)

 can cover both inside and outside the horizon 
by a single coordinate patch.

 Time coordinate as measured by an observer who is
at rest at infinity and freely falls into the BH.

 The space described by the PG metric can be regarded as
a river whose speed of current is the Newtonian escape velocity
at each point.

 Generalized PG metric can also describe the FRLW universe.



Derivation of Painleve-Gullstrand metric
Painleve 1922, Gullstrand 1922,
Kanai, Siino, Hosoya 2011

Schwarzschild metric:

Four velocity of an observer : 

normalization condition :

(conserved) energy per rest mass :

: timelike Killing vector



Derivation of Painleve-Gullstrand metric II
tP : the proper time of the free-falling observer

The geodesic is orthogonal to the surface tp = const.

: radially free-falling velocity

At the horizon f(r)=0  r =2M, the metric is non-singular.

The geodesic tangent vector usμ

 

is equal to the gradient of tp.



Derivation of Painleve-Gullstrand metric III

: conserved energy
: gravitational potential

For a particle freely falling from infinity at rest (ε=1  E=0),
Standard form
given by PG.

This is a vacuum solution, so we want a solution including matter.
Kanai, Siino, Hosoya 2011



Spherical gravitational collapse – from infinity
Kanai, Siino, Hosoya 2011

Spherical gravitational collapse of matter with E = 0 :

Einstein Eq.

Only three are independent.   

Perfect fluid : 

is equal to the escape velocity.



Spherical gravitational collapse – from infinity II
Kanai, Siino, Hosoya 2011

Matter density (of the star) is uniform.

Though, in case of gravitational collapse, we need to match 
this inner solution with the outer solution given before,

we are now interested in only the inner solution because…

(t :  -∞ 0)



Relation between this solution and Friedmann Universe

(t :  -∞ 0)

FLRW

In fact, 

The generalized Painleve-Gullstrand metric includes
flat Friedmann Universe. (Expanding phase: v-  - v-)



Spherical gravitational collapse – from a finite radius
Kanai, Siino, Hosoya 2011

The boundary surface r=a(t) that freely falls from a radius a0 at rest :

Solving Einstein Eq. inside the boundary

In this case also, 

The generalized Painleve-Gullstrand metric includes
closed (open  E>0) Friedmann Universe as well.



Cosmological solution



Generalized Painleve-Gullstrand metric 
as a cosmological solution

Our strategy is to find generalized PG metric in Massive Gravity 
instead of the standard FLRW metric.

Stuckelberg fields in the unitary gauge:

One parameter family:

Effective C.C.

Any PG-type metric in GR (with a cosmological constant) 
is also a solution to Massive Gravity.



Friedmann Universe in Massive Garvity
The FLRW metric can be rewritten in a general PG form :

All types of Friedmann Universe

Perfect fluid :

EOM

Rescaling time coordinate t τ=κt with H:=d lna/dτgives
the standard cosmological equation with effective C.C.

Thus, our solution can accommodate spatially flat, open, and closed models.



More familiar form

Coordinate transformation:

with Stuckelberg fields, which do not respect the same symmetry,



Relation to the work of Gratia, Hu, and Wyman

with Stuckelberg fields, which respects the same symmetry,

Try to find spatially isotropic solution:

(N.B.    b(t,r) = 1 & a(t,r) = a(t)   
 

Flat FRW metric)

Potential: 

arXiv:1205.4241



Relation to the work of Gratia, Hu, and Wyman II

EOMs  for  f  &  g :

The solution to the first EOM is given by P1(x0) = 0 & g(t,r)=x0 a r.

The second EOM reduces to

Our parameter choice with 
automatically satisfies this equation.  



Summary and comments
We have presented a spatially flat, open, and closed 

Friedmann Universe in Massive Gravity, though the   
Stuckelberg fields are inhomogeneous.

 Our analysis is based on the observation that any PG metric
with the Stuckelberg fields in the unitary gauge generates 
an effective cosmological constant for a choice of  one  
parameter family.

 Our choice of parameter is special in that fluctuation modes
become non-dynamical at quadratic order. However,   
recently, it is suggested that they may acquire kinetic term at  
cubic order, signaling the ghost instabilities, though they use  
a different fiducial metric. I am also not sure what   
happens if we take into account quantum corrections.


	New Cosmological Solutions �in Massive Gravity 
	Contents
	Introduction
	Basics of massive gravity (Notation)
	Absence of Flat Friedmann Universe
	Absence of Flat Friedmann Universe II
	What can we do ?
	Painleve-Gullstrand meric
	Spherically symmetric vacuum solution �in (massless) GR
	Danger of coordinate singularity in Massive Gravity
	Danger of coordinate singularity in Massive Gravity II
	Painleve-Gullstrand metric
	Derivation of Painleve-Gullstrand metric
	Derivation of Painleve-Gullstrand metric II
	Derivation of Painleve-Gullstrand metric III
	Spherical gravitational collapse – from infinity
	Spherical gravitational collapse – from infinity II
	Relation between this solution and Friedmann Universe
	Spherical gravitational collapse – from a finite radius
	Cosmological solution
	Generalized Painleve-Gullstrand metric �as a cosmological solution
	Friedmann Universe in Massive Garvity
	More familiar form
	Relation to the work of Gratia, Hu, and Wyman 
	Relation to the work of Gratia, Hu, and Wyman II 
	Summary and comments

