

微生物の集団遊泳と 懸濁液内の輸送現象

石川 拓司

東北大学大学院 工学研究科 E-mail:ishikawa@pfsl.mech.tohoku.ac.jp URL:http://www.pfsl.mech.tohoku.ac.jp/

The role of the infinitely small in nature is infinitely large.

Louis Pasteur (1822-1895)

Micro-organisms in the ocean

50% of biomass Bottom of food chain →Oceanic ecosystem

Absorption of CO₂ Nitrogen cycle →Global environment

Plankton blooms around Australia and New Zealand Picture from Byatt et al. (2001)

Micro-organisms in bioreactors

Making food Yeast, Lactic acid bacterium →Food industry

Sewage treatment →Plant industry

Algae fuel an alternative to fossil fuel ➡Energy revolution?

Micro-organisms in human body

hundreds of species about 10¹⁴ cells

Digestion helped by enterobacteria (vitamin K)

Reproduction owed to sperm swimming

Helicobacter pylori in the stomach

from Introduction to Microbiology

Infection by salmonella

from Introduction to Microbiology

from Introduction to Microbiology

Artificial Micro-swimmers

Thutupalli, et al. (2011)

Dreyfus et al. (2005)

Sanchez, et al. (2011)

In order to understand variety of micro-organisms' phenomena Ecology, Biology & Chemistry have been used.

One example of bacterial phenomena

In this suspension, chemical substances spread 10³ times more than the Brownian diffusion.

Can we explain this by ecology, biology or chemistry?

A suspension of Escherichia coli

Biophysics & biomechanics can contribute more in this field

Bottom-up Strategy

Macroscopic level **Rheological and Diffusion properties** Strong influence Mesoscale level **Collective motions, Coherent structures** Strong influence

Cellular level Cell-cell interactions

Bottom-up Strategy

Biomechanics of an individual and a pair of micro-organisms

• Collective swimming in meso-scale

Macroscopic properties of a suspension of micro-organisms

Conclusions

In terms of swimming motion

e

Flow field

Size of a single cell: $1-100\mu$ m Swimming speed: 1-10 body length / sec \implies Re = $10^{-6} - 10^{-3}$ Stokes flow (Inertia-free)

Force-Torque condition of a cell Force is almost free Torque may not be free (bottom-heaviness)

Review paper

Brennen & Winet, Ann. Rev. Fluid Mech. (1977) Lauga & Powers, Rep. Prog. Phys. (2009)

When two cells come close, what happens?

Experiment of Paramecia

Biological reaction

Avoiding Reaction (AR) Anterior end: Ca^{2+} channel

Escape Reaction (ER) Posterior end: *K*⁺ channel

Ishikawa and Hota, J. Exp. Biol. (2006)

Hydrodynamic interaction

Initially facing each other

Two orientation vectors initially have a large angle

Ishikawa and Hota, J. Exp. Biol. (2006)

Ratio of three kinds of interaction

The total number of experimental cases recorded in this study is 301, and the total number of cells is 602.

Kinds of interaction	Number of cells	Percent [%]
Hydrodynamic Interaction (HI)	510	84.7
Avoiding Reaction (AR)	29	4.8
Escape Reaction (ER)	63	10.5

Ishikawa and Hota, J. Exp. Biol. (2006)

Mainly hydrodynamic interaction

Squirmer model

assumed to propel itself by generating tangential velocities on its surface. Surface velocity is given as a B.C.

Velocity field around Paramecium

experimental results

θ

Paramecium: Force-free, Torque-free

Flow Field: Boundary Element Method

Ishikawa et al., J. Fluid Mech. (2006)

$$u_i(\mathbf{x}) - \left\langle u_i(\mathbf{x}) \right\rangle = -\frac{1}{8\pi\mu} \sum_{\alpha=1}^N \int_{A_\alpha} J_{ij}(\mathbf{x} - \mathbf{y}) q_j(\mathbf{y}) dA_y$$

- **q** : single-layer potential
- A : surface of a particle
- **u** : velocity
- **J** : Green function

Numerical Results

Ishikawa and Hota, J. Exp. Biol. (2006)

A waltzing motion was found by R.E.Goldstein's group.

for fertilization?

http://www.damtp.cam.ac.uk/user/gold/

Mechanism: Biological? Hydrodynamical?

$G_{bh}=50$: bottom-heavy ($\lambda = 5 \text{deg}$)

Waltzing motion does appear

The waltzing motion can be reproduced by introducing:

(a) A wall boundary(b) Bottom-heaviness(c) Swirl velocity

Mechanism = Hydrodynamics

Drescher et al., Phys. Rev. Lett. (2009)

Collective swimming in meso-scale

 Macroscopic properties of a suspension of micro-organisms

Conclusions

Bio-convection

A suspension of *Chlamydomonas*

Mechanism: upswimming of cells that are slightly denser than water generates unstable density stratification which leads to overturning

Other collective motions

Band formation

Band formation of magnetotactic bacteria.Picture from Guell *et al.*,*J. Theor. Biol.* (1988)

Colonies on agar gel

Complex patten of bacterial colonies. Picture from Ben-Jacob & Levine (2006)

Cell motions of *Bacillus subtilis*. Movie from Goldstein Lab,

Mechanism = Physics? Mechanics?

Micro-organism : Spherical squirmer model

 $\begin{aligned} Multipole \ Expansion \ of the \ boundary \ integral \ equation \\ u_i(\mathbf{x}) - \left\langle u_i(\mathbf{x}) \right\rangle &= -\frac{1}{8\pi\mu} \sum_{\alpha=1}^N \int_{A_\alpha} J_{ij}(\mathbf{x} - \mathbf{y}) q_j(\mathbf{y}) dA_y \ : Ewald \ sumation \\ &= \frac{1}{8\pi\mu} \left[\left(1 + \frac{a^2}{6} \nabla^2 \right) J_{ij} F_j^{\alpha} + R_{ij} L_j^{\alpha} + \left(1 + \frac{a^2}{10} \nabla^2 \right) K_{ijk} S_{jk}^{\alpha} + \nabla_k \nabla_l J_{ij} Q_{klj}^{\alpha} + \cdots \right] \end{aligned}$

$$Faxen Laws$$

$$U_{i}^{\alpha} - \langle u_{i}(\mathbf{x}^{\alpha}) \rangle = \frac{F_{i}^{\alpha}}{6\pi\mu a} + \frac{2}{3}B_{1}^{\alpha}e_{i}^{\alpha} + \left(1 + \frac{a^{2}}{6}\nabla^{2}\right)u_{i}'(\mathbf{x}^{\alpha})$$

$$\Omega_{i}^{\alpha} - \langle \omega_{i}(\mathbf{x}^{\alpha}) \rangle = \frac{L_{i}^{\alpha}}{8\pi\mu a^{3}} + \frac{1}{2}\varepsilon_{ijk}\nabla_{j}u_{k}'(\mathbf{x}^{\alpha})$$

$$- \langle E_{ij}(\mathbf{x}^{\alpha}) \rangle = \frac{S_{ij}^{\alpha}}{\frac{20}{3}\pi\mu a^{3}} + \frac{1}{5}\mu a^{2}B_{2}^{\alpha}\left(3e_{i}^{\alpha}e_{j}^{\alpha} - \delta_{ij}\right) + \frac{1}{2}\left(1 + \frac{a^{2}}{10}\nabla^{2}\right)\left(\nabla_{j}u_{i}'(\mathbf{x}^{\alpha}) + \nabla_{i}u_{j}'(\mathbf{x}^{\alpha})\right)$$

Ishikawa et al., J. Fluid Mech. (2008)

Then, inclusion of near-field lubrication forces

cf. Brady & Bossis, Annu. Rev. Fluid Mech. (1988)

For details : Ishikawa et al., J. Fluid Mech. (2008)

Results: Aggregation

Monolayer Non-bottom-heavy ϕ_a =0.1

Periodic B.C.

Hydrodynamic interaction only

Ishikawa & Pedley Phys. Rev. Lett. (2008)

Results: Band formation

Monolayer Bottom-heavy ϕ_a =0.5, G_{bh} =100

Ishikawa & Pedley Phys. Rev. Lett. (2008)

Results: 3D Large scale

Bioconvection

Bottom-Heavy Sedimentation Periodic B.C.

Coherent structures

Various collective motions observed in former experiments can be expressed

- Meso-scale spatiotemporal motion
- Ordered motion

How coherent structures affect transport phenomena?

- Diffusion of particles Wu & Libchaber (2000)
- Energy is transported towards larger scale?

Desktop PC

Sample confocal image

Energy transport in a bacterial bath

In-plane vorticity

Iso-surfaces of $\Omega_z = 1.3$ and -1.3 s⁻¹ are drawn by red and blue, respectively.

Energy dissipation on meso-scale $\nu |\operatorname{rot} \mathbf{v}|^2 \approx 5 \times 10^{-9} \text{ J/(s.mL)}$ / number density of 3×10^{10} = individual bacteria dissipate energy of $2 \times 10^{-19} \text{ J/(s.cell)}$ on the meso-scale. Is this a large portion of energy input?

Energy dissipation of a solitary bacteria

BEM model Cell body: ellipsoid (2 × 1 μm) Flagella length: 6 μm Swimming velocity: 20 μm/s

Energy input: 4×10^{-16} J/s Giacche *et al.*, *PRE* (2010) Used for swimming: 7×10^{-18} J/s (=0.36pN × 20µm/s) Used for the coherent structure: 2×10^{-19} J/s

Gain from the coherent structure: Enhanced diffusion High swimming velocity

Ishikawa, et al., Phys. Rev. Lett. (2011)

Useful to expand the biosphere?

- Biomechanics of an individual and a pair of micro-organisms
- **Collective swimming** in meso-scale
 - Macroscopic properties of a suspension of micro-organisms
- **Conclusions**

Stress field generated by a solitary cell Stress field is opposite A bottom-heavy cell in a shear flow g **Orientation changes**

Shear viscosity (compared to dead cell suspensions)

Horizontal shear	Vertical shear
Increase	Decrease
Decrease	Increase

Shear viscosity : Suspension of Squirmers

Ishikawa & Pedley, J. Fluid Mech. (2007)

Cell Conservation (continuum model)

$$\frac{Dn}{Dt} = -\nabla \cdot \left(n \mathbf{V}_c + \mathbf{J}_r \right)$$
 [+ birth, death, etc]

where V_c = mean cell swimming velocity, J_r = flux due to random cell swimming

$$\mathbf{J}_r = -\mathbf{D} \cdot \nabla n \ ?$$

Definition of **D**

$$\mathbf{D} = \lim_{t \to \infty} \frac{\left\langle \left[\mathbf{r}(t + t_0) - \mathbf{r}(t_0) \right] \left[\mathbf{r}(t + t_0) - \mathbf{r}(t_0) \right] \right\rangle}{2t}$$

Self-diffusion of cells

The spreading is correctly described as a diffusive process

Large Scale Example in Nature

Thin layers of plankton are important hotspots of ecological activity

Durham et al., Science (2009)

Continuum model:

$$\frac{\partial c}{\partial t} = -\nabla \left[\left(\mathbf{V} + \mathbf{U}_d \right) c \right] + \nabla \left[\mathbf{D} \cdot \nabla c \right]$$

Thin layer is also formed in this system.

Engineering settings: Horizontal Poiseuille flow

Flow: 2D, parabolic Cells: Bottom-heavy squirmers Inlet concentration: uniform (c = 0.02)

High concentration appears near the upper wall.

Volume fraction of bottom-heavy cells in the channel becomes larger than that at the inlet.

Ishikawa, J. Fluid Mech. (2012)

Microbial flora in the intestine

Simultaneously solving:

- Flow field generated by peristalsis
- Concentrations of oxygen and nutrient
- Densities of anaerobes and aerobes

(d) nutrient

Ishikawa et al., J. Theor. Biol. (2011)

Conclusions

By using the bottom-up strategy, suspension biomechanics of swimming microbes can be clarified much further.

J. R. Soc. Interface (2009) 6, 815–834 doi:10.1098/rsif.2009.0223 Published online 12 August 2009

REVIEW

Suspension biomechanics of swimming microbes

Takuji Ishikawa*

Department of Bioengineering and Robotics, Tohoku University, 6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan

Such mathematical modeling should be expanded to various phenomena in nature.

Acknowledgements

Collaborators on this topic

T. J. Pedley (Cambridge)
R. E. Goldstein (Cambridge)
E. Lauga (UCSD)
S. Herminghaus (Max Planck)
Prof. T. Yamaguchi (Tohoku Univ.)
Lab members

Grant

NEXT Program by the JSPS Tohoku Univ. Global COE Program

Thank you for your listening

