超伝導量子回路における開放量子系の制御

中村 泰信

東京大学先端科学技術研究センター (2012年4月~) 東京大学大学院工学系研究科物理工学専攻(2012年1月~) 東京大学ナノ量子情報エレクトロニクス研究機構

R

理化学研究所基幹研究所

新研究室@先端研(東大駒場Ⅱキャンパス)

http://www.qc.rcast.u-tokyo.ac.jp

Collaborators: Kazuki Koshino (Tokyo Medical&Dental Univ.) Satoshi Ishizaka (NEC→Hiroshima Univ.) Hirotaka Terai (NICT) Wei Qiu (NICT) Zhen Wang (NICT) Will Oliver (MIT) Jonas Bylander (MIT) Simon Gustavsson (MIT) Fei Yan (MIT)

Acknowledgements

NEC/RIKEN Oleg Astafiev Farruh Abdumalikov (→ETH Zurich) Yuri Pashkin (→Lancaster Univ.) Fumiki Yoshihara Kunihiro Inomata Toshiyuki Miyazaki Tsuyoshi Yamamoto Pierre Billangeon Zhirong Lin JawShen Tsai

General picture as non-equilibrium system

Outline

- Superconducting qubits as an artificial atom
- Decoherence and environment
 - Qubit as quantum spectrum analyzer
- Microwave quantum optics
 - Atoms in cavity
 - Atoms in 1D waveguide

Macroscopic quantum coherence

A.J. Leggett, Prog. Theor. Phys. Suppl. 69, 80 (1980); Phys. Scr. T102, 69 (2002).

Does quantum mechanics hold in macroscopic systems?

Superconducting qubits

Charge qubit

Flux qubit

Y. Nakamura et al. Nature (1999)

Chiorescu, Nakamura, Harmans, Mooij, Science (2003)

- Artificial two-level system in electric circuits
- Coherent control of quantum states in macroscopic systems

Superconducting qubit – nonlinear resonator

B. D. Josephson 1962

number
$$\boldsymbol{n} \Leftrightarrow$$
 phase difference $\boldsymbol{\theta}$ $[n, \theta] = -i$

$$H = -\frac{E_J}{2} \sum_{n} \left\{ |n\rangle \langle n+1| + |n+1\rangle \langle n| \right\} = -\int_0^{2\pi} d\theta E_J \cos \theta |\theta\rangle \langle \theta|$$

Tight-binding model in 1d lattice \Rightarrow Bloch band

$$|\theta\rangle = \sum_{n} e^{in\theta} |n\rangle$$

Superconducting qubits – artificial atoms in electric circuit

Decoherence

Loss of coherence due to coupling with uncontrolled environment

- dissipation
- dephasing

Qubit as a tool for characterization of environment

Possible decoherence sources

Energy relaxation

$$\Gamma_{\downarrow} = \frac{2\pi}{\hbar^2} \left| \left\langle 0 \left| \frac{\partial H_q}{\partial \lambda} \right| 1 \right\rangle \right|^2 S_{\lambda} \left(\frac{E_{01}}{\hbar} \right)$$
$$\Gamma_{\uparrow} = \frac{2\pi}{\hbar^2} \left| \left\langle 0 \left| \frac{\partial H_q}{\partial \lambda} \right| 1 \right\rangle \right|^2 S_{\lambda} \left(-\frac{E_{01}}{\hbar} \right)$$

for weak perturbation: Fermi's golden rule

- qubit energy E₀₁ variable
- relaxation \propto S(+E₀₁/ \hbar) and excitation \propto S(-E₀₁/ \hbar)
- \Rightarrow quantum spectrum analyzer

Dephasing

free evolution of the qubit phase

A long-lived flux qubit

Dynamical decoupling pulse sequences

CPMG rotations

Carr and Purcell, PR 94, 630 (1954); Meiboom and Gill, RSI 29, 688 (1958); Uhrig et al., NJP 10, 083024 (2008)

Recovery of dephasing time

Noise spectrum

J. Bylander et al. Nature Phys. 7, 565 (2011)

Decoherence time of superconducting qubits

Atoms

(a stereotype of) atom

Our artificial atom

Circuit quantum electrodymanics (circuit QED)

A. Blais et al. PRA 69, 062320 (2004); A. Wallraff et al. Nature 431, 162 (2004) Yale

Single artificial-atom maser

Photons in transmission line

Optics

Optical fiber, low loss ~0.2 dB/km Photonic on-chip circuits, ~0.1 dB/cm

Weak nonlinearity

Microwave

Frequency1-10 GHzWavelength30 cm - 3 cm

Microwave on-chip circuits, ~0.3 dB/km(?)

Strong nonlinearity available

coplanar waveguide

J. L. O'Brien et al. Nature Photonics 3, 687 (2009) Bristol

Superconducting transmission line

Confined photon and flying photon

• in resonator (confined "OD" photon; single-mode)

• through transmission line (flying photon; multi-mode; continuum)

Atom-photon strong coupling

Strong coupling in cavity QED

 $g \gg \kappa, \, \gamma, \gamma_{\varphi}$

"Strong coupling" in 1D waveguide

 $\Gamma_1 \gg \gamma, \gamma_{\varphi}$

Superconducting qubits coupled to a transmission line

- Superconducting qubits as artificial atoms
 - Fixed on chip
 - Strong coupling
 - Multi levels, selection rules
- Beauty of 1D
 - Microwave transmission line as 1D channel
 - Perfect spatial mode matching
- Use of interference
 - Importance of temporal modes
 - Limitation with bandwidth
- Spontaneous emission coherent process

Resonant scattering in 3D space

- Small scattering cross section
- Spatial mode mismatch between incident and radiated waves

Resonant scattering in 1D waveguide

Shen and Fan, PRL 95, 213001 (2005) Stanford; Chang et al. PRL 97, 053002 (2006) Harvard

Artificial atom in 1D open space

- Flux qubit coupled to transmission line via kinetic inductance
 - Strong coupling to 1D mode
 - Large magnetic dipole moment
 - Confined transmission/radiation mode
 - \Rightarrow Input-output mode matching

1 μm

Transmission spectroscopy — elastic scattering

Transmission spectroscopy — elastic scattering

Power dependence — saturation of atom

Flux qubit as a three-level artificial atom

- Josephson junction qubits = effective two-level system
- presence of auxiliary states
- large anharmonicity/nonlinearity
- selection rule due to symmetry when flux bias $\delta \Phi = 0$

Spectroscopy of a three-level atom

suppressed excitation due to selection rule

Ladder system at degeneracy point: induced transparency

Ladder system at degeneracy point: induced transparency

Transmission of probe signal

Stimulated emission and amplification

Summary

- Superconducting qubits as artificial atoms
 - Electrical circuits fixed on chip
 - Gigantic dipole, strong coupling with EM modes
 - Multiple levels, selection rules
 - Qubit as quantum spectrum analyzer
- Coupling to 1D channel
 - Microwave transmission line as 1D channel
 - Perfect spatial mode matching
 - Interference between transmitted and scattered fields
 - Design and control of modes
- Future: quantum-optics tools in microwave domain
 - Single photon source/detectors
 - Squeezed state generators
 - Parametric amplifiers