

前多裕介^{1,2,3} and Albert Libchaber³

¹京都大学白眉センター ²科学技術振興機構さきがけ ³The Rockefeller University

Transport and Directed motions in microenvironments

Electro-osmotic flow

Directed motions in a gradient of thermodynamic variables

Thermophoresis

YITP, August 1, 2012

bacterial motility (Thermotaxis)

The Soret effect 1/3

The Ludwig-Soret effect: a solute move along a temperature gradient

C. Ludwig, S-B Akad. Wiss. Wien. *Nature* **20**, 539 (1856); C. Soret. *Arch. Geneve.* **3**, 48 (1879)

D Braun and A Libchaber. *Phys. Rev. Lett.* **89**, 188103 (2002) S Duhr and D Braun. *Phys. Rev. Lett.* **101** 168301 (2008)

Charged molecules move along a temperature gradient

From HOT to COLD

The Soret effect 2/3

YF Chen et al. Nano Letters **12:** 1633 (2012)

Alignment of anisotropic molecules

F Romer et al *Physical Review Letters* **108**: 105901 (2012)

The Soret effect 3/3

- Thermophoresis of colloidal particles in a polymer solution
- Direction of colloidal transport is flipped.
 → Little material dependence

H.R.Jiang, H.Wada, N.Yoshinaga, M.Sano *Physical Review Letters* **102**: 208301 (2009)

Focus in this study

Complex fluids in a temperature gradient

- 1. Thermophoresis of complex fluids and molecular separation
- 2. The effects of molecular folding on thermophoresis
- 3. The origin of the entropic force

1. Thermophoresis of complex fluids and molecular separation

Polymer PEG10,000 (polyethylene glycol 10,000) solution of 0-5% volume fraction is enclosed in a thin chamber.

Temperature gradient in experiments

Temperature visualization using the intensity drop of fluorescent dye

Size-dependent separation

RNA(1.5kb) DNA(250bp)

2.5 2.0 % 1.3 1.2 1.75 % 2 1.1 1.5 0.9 0.8 0.7 0 10 20 30 40 50 40.5∟ 0 20 40 60 4.0 % 2.5 % 10 .5 2 1.5 0 10 20 30 40 50 Radial distance [μm] 0 0 0 10 20 30 40 50 Radial distance [µm]

<u>Yusuke T. Maeda</u>, Axel Buguin, Albert Libchaber *Physical Review Letters* **107**: 038301 (2011) P, August 1, 2012

Beads 0.5μm 0.1μm

Scale bar 35µm

The mechanism of localization (1/4)

PEG molecules are also subject to thermophoresis

The mechanism of localization (2/4)

The mechanism of localization (3/4)

Depletion of PEG from the surface of a solute

 $c(x,z) \approx c_0(x) \exp\left[-\frac{U(z)}{k_B T}\right]$

• Balance of osmotic pressure and hydrostatic Pressure (No net force on a fluid in the bulk)

$$p(x,z) - k_B T c(x,z) = p_0 - k_B T c_0(x) = \text{constant}$$
$$\partial_x p(x,z) = k_B T \partial_x \left[c(x,z) - c_0(x) \right]$$

•The diffuse-osmotic flow is balanced by viscous shear stress at equilibrium

$$\partial_x p(x,z) = \eta \partial_x^2 v_x$$

The mechanism of localization (4/4)

Pores in hydrothermal vent

Large temperature gradients in nature

2. The effect of molecular folding on thermophoresis

Coil-globule transition occurs in a PEG

Single molecule observation

非公開

YITP, August 1, 2012

30

The effect of stem-loop on RNA transport

Next question: <u>Why the force from a PEG</u> gradient can act on small RNA?

tRNA (\sim 5 nm) can be accumulated in a PEG (\sim 3 nm) solution.

Folding dependent accumulation

The accumulation of small RNA and DNA is folding-dependent.

Rigid part is essential

• The stem (double-stranded, rigid) of RNA and DNA strongly enhances accumulation while the loop (single-stranded, flexible) has few effect.

3. The origin of entropic force: diffusiophoresis

Thermophoresis

$$V_T = -D_T \nabla T(r)$$

Entropic force (Diffusiophoresis)

$$V = ??$$

 D_T has little size-dependence and it cannot account for observed separation.

• Size-dependence should present in entropic force.

 $S_T \sim a^{1.1}$ $D_T \sim a^{0.1}$

YITP, August 1, 2012

Salt and migrate: Diffusiophoresis

• The fluid velocity increase in the bulk is $V = -\frac{k_B T}{\eta} \Gamma L \nabla_x c_0$ Excess of solute $\Gamma = \int_0^\infty \left(e^{-\frac{U(z)}{k_B T}} - 1 \right) dz$ The range of attraction $L = \Gamma^{-1} \int_0^\infty z \left(e^{-\frac{U(z)}{k_B T}} - 1 \right) dz$

$$V \approx -\frac{k_B T}{\eta} \lambda^2 \nabla_x c_0 \approx -D_{DP} \nabla_x \log c_0$$

$$\lambda^2 = \varepsilon k T / 2q^2 c_0 \qquad D_{DP} = \varepsilon k^2 T^2 / 2q^2 \eta$$

B Abecassis, et al Nature Materials **7**, 785 (2008)

PEG and Diffusiophoresis

Repulsion of PEG in the surface of a solute

$$c(x,z) \approx c_0(x) \exp\left[-\frac{U(z)}{k_B T}\right]$$
$$U(z) > 0$$

• The fluid velocity increase in the bulk is $V \approx -\frac{k_B T}{3\eta} \lambda^2 \nabla c_{PEG}$

Diffusiophoresis velocity in no-slip condition is independent of the particle size.

We check if this relation holds or not, in the absence of temperature gradient.

Experimental setup: microfluidics

- Laminar flows in PDMS
 microfluidics
- Microchannel: Width 2 mm, Height 50 μm
- Polymer in a solution is PEG1000

$$\begin{split} D_{PEG} &= 1.35 \times 10^2 \ \mu\text{m}^2\text{/s} \\ U &= 1.16 \qquad \text{mm/s} \end{split}$$

$$\nabla c_{PEG} \approx c_{PEG}^0 / \sqrt{D_{PEG} y / U} \approx 0.5 \ \%/\mu\text{m}$$

PEG1,000 gradient-driven transport

Colloid (fluorescent) y=0 mm 0.1 μm, 2.0*10⁻³ % 10 mm PEG1,000, 20% (Not PEG10,000 !) 30 mm 200 Fluorescent intensity [au] 📕 y=0 mm **y**=30 mm 150 100 50 0 800 1200 400 1600 2000 X [μm]

Different sized-colloids in a gradient of small PEG1,000

• In small PEG such as PEG1,000, the velocity of diffusiophoresis is not strongly dependent on particle size.

• It is because 10% PEG1,000 is still in a dilute regime, which is included in a model.

Future works

The mechanism of size-dependent separation

The mechanism of trapping small RNA by comparable PEG

(Putative) Relevance of biological systems

1. Selection and evolution of small RNA

2. Transport and segregation of genome

Blobs of newly synthesized DNA

Conclusions

□ DNA and RNA of various sizes show ring-like localization or accumulation under a temperature gradient in PEG.

□ The entropic force gradient generated by the PEG gradient on the surface of solute, called diffusiophoresis, can push solute to the hot region.

□ Simple microfluidic device allows us to study the transport by repulsive PEG. In a dilute regime, the clear size-dependence is not observed.

Size-dependence of DNA localization is reversed for a long DNA >5.6kbp.
 PEG osmotic pressure induces coil-globule transition and decreases its effective size.

The attraction by PEG concentration gradient is folding-dependent:
 Small RNA having stem-loop can be accumulated while poly-U of random chain cannot.

Acknowledgement

- Albert Libchaber (Rockefeller)
- Axel Buguin (Curie Institute)
- Tsvi Tlusty (Weizmann Institute)
- Jack Merrin (Rockefeller)
- Pradeep Kumar (Rockefeller)
- Hanna Salman (Pittsburgh)
- Alex Grosberg (NYU)
- Yuta Shimamoto (Rockefeller)
- Tarun M Kapoor (Rockefeller)
- Masaki Sano (Tokyo)
- Hirofumi Wada (Kyoto)
- Natsuhiko Yoshinaga (Tohoku)
- Hong-ren Jiang (Tokyo)
- Kenichi Yoshikawa (Kyoto)
- Masatoshi Ichikawa (Kyoto)

This research is supported by

