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FIG. 3. (Color online) Entanglement spectra of the (left) square
and (right) hexagonal VBS states with cylindrical geometry (PBC).
In both cases, Ly = 16 and Lx = 5, in which case results have
converged to the two-dimensional limit. The ground-state energy of
HE is denoted by λ0. The total spins S of the states are marked by
different symbols.

to boundary spin correlations and EE is associated with a
group of elemental valence bond loops mentioned above,
each connecting two nearest-neighbor boundary spins. In
a lattice with rectangular geometry (OBC), the number of
such elemental loops is always 1 less than the number of
boundary sites Ly . As a result, the leading correction to
entropy per boundary spin is proportional to (Ly − 1)/Ly ,
which approaches 1 in the thermodynamic limit. Accordingly,
we expect that the entanglement entropy converges slowly
following the function 1/Ly , as observed in Fig. 2.

For a lattice wrapped on a cylinder (PBC), winding loops
associated with periodic boundary provide extra spin-spin
correlations to the system. The EE in a finite system is lower
than the result in the thermodynamic limit due to the fact
that such winding valence bond loops are more prominent
in a smaller lattice compared with those in a larger one.
Furthermore, amplitudes associated with winding loops decay
exponentially fast according to the number of boundary spins
Ly , which is of the same order of winding loops’ length. As a
result, we observe a exponentially converging behavior of the
entanglement entropy in a PBC lattice.

B. Entanglement spectrum

Let us now consider the ES defined as a set of eigenvalues
of the entanglement Hamiltonian HE := − ln ρ̂A. In a system
with PBC, we are able to study the ES as a function of mo-
mentum in the y direction (k in Fig. 3). As shown in Fig. 3, the
ES obtained from the square (hexagonal) VBS state resembles
the spectrum of the spin-1/2 antiferromagnetic (ferromagnetic)
Heisenberg chain. The reason for the dependence of the ES on
the lattice structure is as follows: Although both the square and
hexagonal lattices are bipartite, neighboring boundary spins
belong to the different sublattices in the case of the square VBS
state. As a result, the entanglement Hamiltonian is reminiscent
of the AFM Heisenberg chain. In contrast, in the hexagonal
lattice, all boundary spins belong to the same sublattice, hence

the FM spectrum appears. The lowest-lying modes in the
left panel can be identified as the des Cloizeaux-Pearson
spectrum in the AFM Heisenberg chain.24 In the right panel,
the excitations with the total spin S = 7 look like the ordinary
spin-wave spectrum in the FM Heisenberg chain. In fact, due
to the translational symmetry in the y direction, the Bloch
theorem applies and the single-magnon states in the FM chain
are exact eigenstates of the RDM for the hexagonal VBS state.

C. Nested entanglement entropy

In order to further establish the correspondence between
the holographic spin chain and the Hamiltonian for the
Heisenberg chain, we introduce a measure, which we call
nested entanglement entropy (NEE), and study its scaling
properties. One might think that the finite-size scaling analysis
of the ground-state energy λ0 is sufficient to reveal the CFT
structure in the holographic spin chain. However, there is
a subtle point here. The spectrum of the RDM can only
tell us that the entanglement Hamiltonian can be expressed
as HE = βeffHhol with the Hamiltonian for the holographic
chain Hhol. There is no unique way to disentangle a fictitious
temperature βeff from Hhol. Assuming that Hhol is gapless and
its low-energy dispersion is given by vk, we can estimate βeffv
from the slope of the modes at k = 0 in the left panel of
Fig. 3 (see Table II). The obtained slope shows saturation at
about Lx = 4,5, which suggests that the fictitious temperature
is presumably nonzero (βeff < ∞) in the infinite 2D system.
As we will see, however, the NEE provides a more clear-cut
approach to investigate the critical behavior of Hhol without
any assumption.

Let us now give a precise definition of the NEE. Based
on the ground state of the entanglement Hamiltonian HE, we
construct the nested RDM for the subchain of length $ in the
holographic spin chain as

ρ($) = Tr$+1,...,Ly
[|ψ0〉〈ψ0|], (12)

where |ψ0〉 denotes the normalized ground state of HE and the
trace is taken over the remaining sites excluding the subchain.
The NEE is then obtained from the nested RDM as

S($,Ly) = −Tr1,...,$[ρ($) ln ρ($)], (13)

where the trace is over the sites on the subchain. Since the
low-energy physics of the AFM Heisenberg chain is described
by c = 1 CFT, the NEE is expected to behave as25

SPBC($,Ly) = c

3
ln[f ($)] + s1, (14)

f ($) = Ly

π
sin

(
π$

Ly

)
(15)

for a lattice with PBC, where c is the central charge, and s1 is
a nonuniversal constant. In Fig. 4(a), we show NEE obtained
from the square VBS state with Lx = 5 and Ly = 16. The

TABLE II. Slopes (βeffv) of modes at k = 0 for Ly = 16.

Lx = 1 Lx = 2 Lx = 3 Lx = 4 Lx = 5

1.69000 2.02221 2.13535 2.17006 2.18755
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Nested reduced density matrix
�(�) := Tr�+1,··· ,L [|�0���0|]

Nested entanglement entropy
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FIG. 4. (Color online) Nested entanglement entropy S(!,Ly)
as a function of the subchain length ! for Lx = 5 and Ly = 16.
(a) and (b) show results obtained for square VBS states with PBC and
OBC, respectively. Fits to the CFT predictions, Eqs. (14) and (16),
are indicated by open circles. The lines are guides to the eye.

CFT prediction, Eq. (14), well explains the spatial profile of
the NEE. The fit yields c = 1.01(7), which is reasonably close
to c = 1.

The NEE for ! = Ly/2 (half-NEE) is simplified to be
SPBC(Ly/2,Ly) = (c/3) ln(Ly) + const. From the data with
the finite-size scaling form of the NEE, we can also extract
the central charge c as summarized in Table III. For the case
Lx = 1, c is remarkably close to unity. This further supports
our conjecture: a correspondence between the entanglement
Hamiltonian of the 2D AKLT model and the physical Hamil-
tonian of the 1D Heisenberg chain. A slight modification of c
is observed as the bulk width increases from Lx = 1 to 5.

In the case of the rectangular geometry (OBC), a staggered
pattern of NEE is expected from studies of the standard EE in
open spin chains:26,27

SOBC(!,Ly) = c

6
ln[g(2! + 1)] + a − πc1

2v

(−1)!

g(2! + 1)1/2K
,

(16)

g(!) = 2(Ly + 1)
π

sin
(

π!

2(Ly + 1)

)
.

In Fig. 4(b), we show the NEE for the square VBS state on
the rectangle with Lx = 5 and Ly = 16. We take the central
charge to be c = 1 and the Tomonaga-Luttinger parameter
K = 1, and tune a and c1/v as fitting parameters. The fit
is reasonably good except for the boundaries. This deviation
might be due to logarithmic corrections, which appear in the
SU(2) symmetric AFM spin chains26 but are not taken into
account in Eq. (16).

To provide further evidence for the holographic spin chain,
we now consider the hybrid system comprised of squares
and hexagons, shown in Fig. 5(a). It is expected that the
entanglement Hamiltonian is described by the FM-AFM
alternating Heisenberg model. Figure 5(b) shows the ES for
this system. It is clearly seen that there is a gap between the

TABLE III. The obtained central charge from half-NEE.

Lx = 1 Lx = 2 Lx = 3 Lx = 4 Lx = 5

1.007(4) 1.042(4) 1.055(4) 1.056(2) 1.059(2)
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FIG. 5. (Color online) (a) (Left) VBS state on a hybrid lattice. The
red (dotted) line indicates the reflection axis. (Right) Corresponding
holographic chain. The thick and dashed lines indicate AFM and FM
bonds, respectively. (b) Entanglement spectrum of the VBS state in
(a) with Ly = 16. The ground state energy is denoted by λ0. The
dashed curve indicates the spectrum of triplet-pair bound states.
(c) Nested entanglement entropy S(!,Ly) as a function of ! for
Ly = 16.

ground state and the continuum. The gap rapidly saturates with
increasing Ly . The behavior of the ES is totally consistent with
the energy spectrum of the alternating Heisenberg chain, the
interactions of which are denoted J and J ′.28 By comparing the
bound-state spectrum in Fig. 5(b) with that of the triplet-pair
excitation in the alternating Heisenberg chain,28 we estimate
the ratio of the FM exchange divided by the AFM one as
J ′/J ∼ 0.5. Note that one can further manipulate J ′/J of the
holographic spin chain by tuning the lattice structure and the
number of valence bonds on each edge the lattice. The NEE
associated with the ground state of HE is shown in Fig. 5(c).
The NEE is 2 log 2 when two AFM bonds are cut, whereas it
becomes about log 2 when both FM and AFM bonds are cut.
The obtained result is in good agreement with the standard EE
in the alternating Heisenberg chain studied in Ref. 29.

IV. CONCLUSION

We have studied both the entanglement entropy and
spectrum associated with the VBS ground state of the AKLT
model on various 2D lattices. It was shown that the reduced
density matrix of a subsystem can be interpreted as a thermal
density matrix of the holographic spin chain, the spectrum
of which resembles that of the spin-1/2 Heisenberg chain.
To elucidate this relationship, we have introduced the concept
nested entanglement entropy (NEE), which allows us to clarify
this correspondence in a quantitative way without information
on the fictitious temperatures. The finite-size scaling analysis
of the NEE revealed that the low-energy physics of the
holographic chain associated with the square lattice VBS is
well described by c = 1 conformal field theory. The NEE
was also applied to the hybrid VBS state, the entanglement
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(a) and (b) show results obtained for square VBS states with PBC and
OBC, respectively. Fits to the CFT predictions, Eqs. (14) and (16),
are indicated by open circles. The lines are guides to the eye.

CFT prediction, Eq. (14), well explains the spatial profile of
the NEE. The fit yields c = 1.01(7), which is reasonably close
to c = 1.

The NEE for ! = Ly/2 (half-NEE) is simplified to be
SPBC(Ly/2,Ly) = (c/3) ln(Ly) + const. From the data with
the finite-size scaling form of the NEE, we can also extract
the central charge c as summarized in Table III. For the case
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our conjecture: a correspondence between the entanglement
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charge to be c = 1 and the Tomonaga-Luttinger parameter
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might be due to logarithmic corrections, which appear in the
SU(2) symmetric AFM spin chains26 but are not taken into
account in Eq. (16).

To provide further evidence for the holographic spin chain,
we now consider the hybrid system comprised of squares
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holographic chain. The thick and dashed lines indicate AFM and FM
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ground state and the continuum. The gap rapidly saturates with
increasing Ly . The behavior of the ES is totally consistent with
the energy spectrum of the alternating Heisenberg chain, the
interactions of which are denoted J and J ′.28 By comparing the
bound-state spectrum in Fig. 5(b) with that of the triplet-pair
excitation in the alternating Heisenberg chain,28 we estimate
the ratio of the FM exchange divided by the AFM one as
J ′/J ∼ 0.5. Note that one can further manipulate J ′/J of the
holographic spin chain by tuning the lattice structure and the
number of valence bonds on each edge the lattice. The NEE
associated with the ground state of HE is shown in Fig. 5(c).
The NEE is 2 log 2 when two AFM bonds are cut, whereas it
becomes about log 2 when both FM and AFM bonds are cut.
The obtained result is in good agreement with the standard EE
in the alternating Heisenberg chain studied in Ref. 29.
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of which resembles that of the spin-1/2 Heisenberg chain.
To elucidate this relationship, we have introduced the concept
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